मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

4x+2y=0,6x-2y=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
4x+2y=0
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
4x=-2y
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
x=\frac{1}{4}\left(-2\right)y
दोन्ही बाजूंना 4 ने विभागा.
x=-\frac{1}{2}y
-2y ला \frac{1}{4} वेळा गुणाकार करा.
6\left(-\frac{1}{2}\right)y-2y=0
इतर समीकरणामध्ये x साठी -\frac{y}{2} चा विकल्प वापरा, 6x-2y=0.
-3y-2y=0
-\frac{y}{2} ला 6 वेळा गुणाकार करा.
-5y=0
-3y ते -2y जोडा.
y=0
दोन्ही बाजूंना -5 ने विभागा.
x=0
x=-\frac{1}{2}y मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=0,y=0
सिस्टम आता सोडवली आहे.
4x+2y=0,6x-2y=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}4&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}4&2\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
समीकरणाला \left(\begin{matrix}4&2\\6&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-2\times 6}&-\frac{2}{4\left(-2\right)-2\times 6}\\-\frac{6}{4\left(-2\right)-2\times 6}&\frac{4}{4\left(-2\right)-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
x=0,y=0
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
4x+2y=0,6x-2y=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6\times 4x+6\times 2y=0,4\times 6x+4\left(-2\right)y=0
4x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने गुणाकार करा.
24x+12y=0,24x-8y=0
सरलीकृत करा.
24x-24x+12y+8y=0
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 24x+12y=0 मधून 24x-8y=0 वजा करा.
12y+8y=0
24x ते -24x जोडा. 24x आणि -24x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
20y=0
12y ते 8y जोडा.
y=0
दोन्ही बाजूंना 20 ने विभागा.
6x=0
6x-2y=0 मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=0
दोन्ही बाजूंना 6 ने विभागा.
x=0,y=0
सिस्टम आता सोडवली आहे.