मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=-2 ab=3\left(-1\right)=-3
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू 3x^{2}+ax+bx-1 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
a=-3 b=1
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b नकारात्‍मक असल्‍याने, नकारात्‍मक नंबरमध्‍ये सकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. फक्‍त असे पेअर सिस्‍टमचे निरसन आहे.
\left(3x^{2}-3x\right)+\left(x-1\right)
\left(3x^{2}-3x\right)+\left(x-1\right) प्रमाणे 3x^{2}-2x-1 पुन्हा लिहा.
3x\left(x-1\right)+x-1
3x^{2}-3x मधील 3x घटक काढा.
\left(x-1\right)\left(3x+1\right)
वितरण गुणधर्माचा वापर करून x-1 सामान्य पदाचे घटक काढा.
x=1 x=-\frac{1}{3}
समीकरण निरसन शोधण्‍यासाठी, x-1=0 आणि 3x+1=0 सोडवा.
3x^{2}-2x-1=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 3, b साठी -2 आणि c साठी -1 विकल्प म्हणून ठेवा.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
वर्ग -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-1\right)}}{2\times 3}
3 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times 3}
-1 ला -12 वेळा गुणाकार करा.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\times 3}
4 ते 12 जोडा.
x=\frac{-\left(-2\right)±4}{2\times 3}
16 चा वर्गमूळ घ्या.
x=\frac{2±4}{2\times 3}
-2 ची विरूद्ध संख्या 2 आहे.
x=\frac{2±4}{6}
3 ला 2 वेळा गुणाकार करा.
x=\frac{6}{6}
आता ± धन असताना समीकरण x=\frac{2±4}{6} सोडवा. 2 ते 4 जोडा.
x=1
6 ला 6 ने भागा.
x=-\frac{2}{6}
आता ± ऋण असताना समीकरण x=\frac{2±4}{6} सोडवा. 2 मधून 4 वजा करा.
x=-\frac{1}{3}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-2}{6} अंश निम्नतम टर्म्सला कमी करा.
x=1 x=-\frac{1}{3}
समीकरण आता सोडवली आहे.
3x^{2}-2x-1=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
3x^{2}-2x-1-\left(-1\right)=-\left(-1\right)
समीकरणाच्या दोन्ही बाजूस 1 जोडा.
3x^{2}-2x=-\left(-1\right)
-1 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
3x^{2}-2x=1
0 मधून -1 वजा करा.
\frac{3x^{2}-2x}{3}=\frac{1}{3}
दोन्ही बाजूंना 3 ने विभागा.
x^{2}-\frac{2}{3}x=\frac{1}{3}
3 ने केलेला भागाकार 3 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} चा भागाकार करा, x टर्म चा गुणांक, -\frac{1}{3} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{1}{3} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{1}{3} वर्ग घ्या.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{3} ते \frac{1}{9} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
घटक x^{2}-\frac{2}{3}x+\frac{1}{9}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{1}{3}=\frac{2}{3} x-\frac{1}{3}=-\frac{2}{3}
सरलीकृत करा.
x=1 x=-\frac{1}{3}
समीकरणाच्या दोन्ही बाजूस \frac{1}{3} जोडा.