घटक
3\left(x-2\right)^{2}
मूल्यांकन करा
3\left(x-2\right)^{2}
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3\left(x^{2}-4x+4\right)
3 मधून घटक काढा.
\left(x-2\right)^{2}
x^{2}-4x+4 वाचारात घ्या. a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, हे अचूक वर्गाचे सूत्र वापरा, ज्यामध्ये a=x आणि b=2.
3\left(x-2\right)^{2}
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
factor(3x^{2}-12x+12)
ह्या त्रिपदीमध्ये त्रिपदी वर्गाचा फॉर्म आहे, कदाचित सामान्य घटकाने गुणित केलेला. अग्रेसर आणि अनुगामी टर्म्सचे वर्गमुळ शोधून त्रिपदी वर्गाचे घटक पाडता येऊ शकतील.
gcf(3,-12,12)=3
सहगुणकांचा सर्वात सामान्य घटक शोधा.
3\left(x^{2}-4x+4\right)
3 मधून घटक काढा.
\sqrt{4}=2
अनुगामी टर्मचा वर्गमुळ शोधा, 4.
3\left(x-2\right)^{2}
त्रिपदी वर्गाच्या मध्य टर्मच्या चिन्हाने निर्धारित केलेल्या चिन्हासह, त्रिपदी वर्ग हा द्विपदीचा वर्ग आहे जो अग्रेसर आणि अनुगामी टर्म्सची बेरीज किंवा त्यांतील फरक आहे.
3x^{2}-12x+12=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
वर्ग -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
3 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
12 ला -12 वेळा गुणाकार करा.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
144 ते -144 जोडा.
x=\frac{-\left(-12\right)±0}{2\times 3}
0 चा वर्गमूळ घ्या.
x=\frac{12±0}{2\times 3}
-12 ची विरूद्ध संख्या 12 आहे.
x=\frac{12±0}{6}
3 ला 2 वेळा गुणाकार करा.
3x^{2}-12x+12=3\left(x-2\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 2 आणि x_{2} साठी 2 बदला.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}