x साठी सोडवा
x=\frac{\sqrt{97}-5}{6}\approx 0.808142967
x=\frac{-\sqrt{97}-5}{6}\approx -2.474809634
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x^{2}+5x+2=8
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
3x^{2}+5x+2-8=8-8
समीकरणाच्या दोन्ही बाजूंमधून 8 वजा करा.
3x^{2}+5x+2-8=0
8 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
3x^{2}+5x-6=0
2 मधून 8 वजा करा.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-6\right)}}{2\times 3}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 3, b साठी 5 आणि c साठी -6 विकल्प म्हणून ठेवा.
x=\frac{-5±\sqrt{25-4\times 3\left(-6\right)}}{2\times 3}
वर्ग 5.
x=\frac{-5±\sqrt{25-12\left(-6\right)}}{2\times 3}
3 ला -4 वेळा गुणाकार करा.
x=\frac{-5±\sqrt{25+72}}{2\times 3}
-6 ला -12 वेळा गुणाकार करा.
x=\frac{-5±\sqrt{97}}{2\times 3}
25 ते 72 जोडा.
x=\frac{-5±\sqrt{97}}{6}
3 ला 2 वेळा गुणाकार करा.
x=\frac{\sqrt{97}-5}{6}
आता ± धन असताना समीकरण x=\frac{-5±\sqrt{97}}{6} सोडवा. -5 ते \sqrt{97} जोडा.
x=\frac{-\sqrt{97}-5}{6}
आता ± ऋण असताना समीकरण x=\frac{-5±\sqrt{97}}{6} सोडवा. -5 मधून \sqrt{97} वजा करा.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
समीकरण आता सोडवली आहे.
3x^{2}+5x+2=8
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
3x^{2}+5x+2-2=8-2
समीकरणाच्या दोन्ही बाजूंमधून 2 वजा करा.
3x^{2}+5x=8-2
2 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
3x^{2}+5x=6
8 मधून 2 वजा करा.
\frac{3x^{2}+5x}{3}=\frac{6}{3}
दोन्ही बाजूंना 3 ने विभागा.
x^{2}+\frac{5}{3}x=\frac{6}{3}
3 ने केलेला भागाकार 3 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{5}{3}x=2
6 ला 3 ने भागा.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=2+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} चा भागाकार करा, x टर्म चा गुणांक, \frac{5}{6} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{5}{6} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{5}{3}x+\frac{25}{36}=2+\frac{25}{36}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{5}{6} वर्ग घ्या.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{97}{36}
2 ते \frac{25}{36} जोडा.
\left(x+\frac{5}{6}\right)^{2}=\frac{97}{36}
घटक x^{2}+\frac{5}{3}x+\frac{25}{36}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{97}{36}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{5}{6}=\frac{\sqrt{97}}{6} x+\frac{5}{6}=-\frac{\sqrt{97}}{6}
सरलीकृत करा.
x=\frac{\sqrt{97}-5}{6} x=\frac{-\sqrt{97}-5}{6}
समीकरणाच्या दोन्ही बाजूंमधून \frac{5}{6} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}