मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\left(x+1\right)^{2}=\frac{75}{3}
दोन्ही बाजूंना 3 ने विभागा.
\left(x+1\right)^{2}=25
25 मिळविण्यासाठी 75 ला 3 ने भागाकार करा.
x^{2}+2x+1=25
\left(x+1\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
दोन्ही बाजूंकडून 25 वजा करा.
x^{2}+2x-24=0
-24 मिळविण्यासाठी 1 मधून 25 वजा करा.
a+b=2 ab=-24
समीकरण सोडवण्‍यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}+2x-24 घटक. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,24 -2,12 -3,8 -4,6
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b सकारात्‍मक असल्‍याने, सकारात्‍मक नंबरमध्‍ये नकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. -24 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
प्रत्‍येक पेअरची बेरीज करा.
a=-4 b=6
बेरी 2 येत असलेल्‍या पेअरचे निरसन.
\left(x-4\right)\left(x+6\right)
मिळविलेले मूल्‍य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
x=4 x=-6
समीकरण निरसन शोधण्‍यासाठी, x-4=0 आणि x+6=0 सोडवा.
\left(x+1\right)^{2}=\frac{75}{3}
दोन्ही बाजूंना 3 ने विभागा.
\left(x+1\right)^{2}=25
25 मिळविण्यासाठी 75 ला 3 ने भागाकार करा.
x^{2}+2x+1=25
\left(x+1\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
दोन्ही बाजूंकडून 25 वजा करा.
x^{2}+2x-24=0
-24 मिळविण्यासाठी 1 मधून 25 वजा करा.
a+b=2 ab=1\left(-24\right)=-24
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू x^{2}+ax+bx-24 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,24 -2,12 -3,8 -4,6
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b सकारात्‍मक असल्‍याने, सकारात्‍मक नंबरमध्‍ये नकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. -24 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
प्रत्‍येक पेअरची बेरीज करा.
a=-4 b=6
बेरी 2 येत असलेल्‍या पेअरचे निरसन.
\left(x^{2}-4x\right)+\left(6x-24\right)
\left(x^{2}-4x\right)+\left(6x-24\right) प्रमाणे x^{2}+2x-24 पुन्हा लिहा.
x\left(x-4\right)+6\left(x-4\right)
पहिल्‍या आणि 6 मध्‍ये अन्‍य समूहात x घटक काढा.
\left(x-4\right)\left(x+6\right)
वितरण गुणधर्माचा वापर करून x-4 सामान्य पदाचे घटक काढा.
x=4 x=-6
समीकरण निरसन शोधण्‍यासाठी, x-4=0 आणि x+6=0 सोडवा.
\left(x+1\right)^{2}=\frac{75}{3}
दोन्ही बाजूंना 3 ने विभागा.
\left(x+1\right)^{2}=25
25 मिळविण्यासाठी 75 ला 3 ने भागाकार करा.
x^{2}+2x+1=25
\left(x+1\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+2x+1-25=0
दोन्ही बाजूंकडून 25 वजा करा.
x^{2}+2x-24=0
-24 मिळविण्यासाठी 1 मधून 25 वजा करा.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी 2 आणि c साठी -24 विकल्प म्हणून ठेवा.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
वर्ग 2.
x=\frac{-2±\sqrt{4+96}}{2}
-24 ला -4 वेळा गुणाकार करा.
x=\frac{-2±\sqrt{100}}{2}
4 ते 96 जोडा.
x=\frac{-2±10}{2}
100 चा वर्गमूळ घ्या.
x=\frac{8}{2}
आता ± धन असताना समीकरण x=\frac{-2±10}{2} सोडवा. -2 ते 10 जोडा.
x=4
8 ला 2 ने भागा.
x=-\frac{12}{2}
आता ± ऋण असताना समीकरण x=\frac{-2±10}{2} सोडवा. -2 मधून 10 वजा करा.
x=-6
-12 ला 2 ने भागा.
x=4 x=-6
समीकरण आता सोडवली आहे.
\left(x+1\right)^{2}=\frac{75}{3}
दोन्ही बाजूंना 3 ने विभागा.
\left(x+1\right)^{2}=25
25 मिळविण्यासाठी 75 ला 3 ने भागाकार करा.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+1=5 x+1=-5
सरलीकृत करा.
x=4 x=-6
समीकरणाच्या दोन्ही बाजूंमधून 1 वजा करा.