x साठी सोडवा
x = \frac{3105 \sqrt{7}}{14} \approx 586.789844347
x = -\frac{3105 \sqrt{7}}{14} \approx -586.789844347
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
28x^{2}=9641025
2 च्या पॉवरसाठी 3105 मोजा आणि 9641025 मिळवा.
x^{2}=\frac{9641025}{28}
दोन्ही बाजूंना 28 ने विभागा.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
28x^{2}=9641025
2 च्या पॉवरसाठी 3105 मोजा आणि 9641025 मिळवा.
28x^{2}-9641025=0
दोन्ही बाजूंकडून 9641025 वजा करा.
x=\frac{0±\sqrt{0^{2}-4\times 28\left(-9641025\right)}}{2\times 28}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 28, b साठी 0 आणि c साठी -9641025 विकल्प म्हणून ठेवा.
x=\frac{0±\sqrt{-4\times 28\left(-9641025\right)}}{2\times 28}
वर्ग 0.
x=\frac{0±\sqrt{-112\left(-9641025\right)}}{2\times 28}
28 ला -4 वेळा गुणाकार करा.
x=\frac{0±\sqrt{1079794800}}{2\times 28}
-9641025 ला -112 वेळा गुणाकार करा.
x=\frac{0±12420\sqrt{7}}{2\times 28}
1079794800 चा वर्गमूळ घ्या.
x=\frac{0±12420\sqrt{7}}{56}
28 ला 2 वेळा गुणाकार करा.
x=\frac{3105\sqrt{7}}{14}
आता ± धन असताना समीकरण x=\frac{0±12420\sqrt{7}}{56} सोडवा.
x=-\frac{3105\sqrt{7}}{14}
आता ± ऋण असताना समीकरण x=\frac{0±12420\sqrt{7}}{56} सोडवा.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
समीकरण आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}