x, y साठी सोडवा
x=0
y=-2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x-y=2,4x-y=2
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-y=2
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=y+2
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{2}\left(y+2\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{1}{2}y+1
y+2 ला \frac{1}{2} वेळा गुणाकार करा.
4\left(\frac{1}{2}y+1\right)-y=2
इतर समीकरणामध्ये x साठी \frac{y}{2}+1 चा विकल्प वापरा, 4x-y=2.
2y+4-y=2
\frac{y}{2}+1 ला 4 वेळा गुणाकार करा.
y+4=2
2y ते -y जोडा.
y=-2
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
x=\frac{1}{2}\left(-2\right)+1
x=\frac{1}{2}y+1 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-1+1
-2 ला \frac{1}{2} वेळा गुणाकार करा.
x=0
1 ते -1 जोडा.
x=0,y=-2
सिस्टम आता सोडवली आहे.
2x-y=2,4x-y=2
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-1\\4&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-4\right)}&-\frac{-1}{2\left(-1\right)-\left(-4\right)}\\-\frac{4}{2\left(-1\right)-\left(-4\right)}&\frac{2}{2\left(-1\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-2&1\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 2+\frac{1}{2}\times 2\\-2\times 2+2\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
अंकगणित करा.
x=0,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-y=2,4x-y=2
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x-4x-y+y=2-2
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x-y=2 मधून 4x-y=2 वजा करा.
2x-4x=2-2
-y ते y जोडा. -y आणि y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-2x=2-2
2x ते -4x जोडा.
-2x=0
2 ते -2 जोडा.
x=0
दोन्ही बाजूंना -2 ने विभागा.
-y=2
4x-y=2 मध्ये x साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-2
दोन्ही बाजूंना -1 ने विभागा.
x=0,y=-2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}