मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=-1 ab=2\left(-15\right)=-30
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू 2x^{2}+ax+bx-15 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
1,-30 2,-15 3,-10 5,-6
ab नकारात्‍मक असल्‍याने, a व b मध्‍ये विरुद्ध चिन्‍हे आहेत. a+b नकारात्‍मक असल्‍याने, नकारात्‍मक नंबरमध्‍ये सकारात्‍मकतेपेक्षा परिपूर्ण मूल्‍य आहे. -30 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
प्रत्‍येक पेअरची बेरीज करा.
a=-6 b=5
बेरी -1 येत असलेल्‍या पेअरचे निरसन.
\left(2x^{2}-6x\right)+\left(5x-15\right)
\left(2x^{2}-6x\right)+\left(5x-15\right) प्रमाणे 2x^{2}-x-15 पुन्हा लिहा.
2x\left(x-3\right)+5\left(x-3\right)
पहिल्‍या आणि 5 मध्‍ये अन्‍य समूहात 2x घटक काढा.
\left(x-3\right)\left(2x+5\right)
वितरण गुणधर्माचा वापर करून x-3 सामान्य पदाचे घटक काढा.
x=3 x=-\frac{5}{2}
समीकरण निरसन शोधण्‍यासाठी, x-3=0 आणि 2x+5=0 सोडवा.
2x^{2}-x-15=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-15\right)}}{2\times 2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 2, b साठी -1 आणि c साठी -15 विकल्प म्हणून ठेवा.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-15\right)}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 2}
-15 ला -8 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 2}
1 ते 120 जोडा.
x=\frac{-\left(-1\right)±11}{2\times 2}
121 चा वर्गमूळ घ्या.
x=\frac{1±11}{2\times 2}
-1 ची विरूद्ध संख्या 1 आहे.
x=\frac{1±11}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{12}{4}
आता ± धन असताना समीकरण x=\frac{1±11}{4} सोडवा. 1 ते 11 जोडा.
x=3
12 ला 4 ने भागा.
x=-\frac{10}{4}
आता ± ऋण असताना समीकरण x=\frac{1±11}{4} सोडवा. 1 मधून 11 वजा करा.
x=-\frac{5}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-10}{4} अंश निम्नतम टर्म्सला कमी करा.
x=3 x=-\frac{5}{2}
समीकरण आता सोडवली आहे.
2x^{2}-x-15=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
2x^{2}-x-15-\left(-15\right)=-\left(-15\right)
समीकरणाच्या दोन्ही बाजूस 15 जोडा.
2x^{2}-x=-\left(-15\right)
-15 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
2x^{2}-x=15
0 मधून -15 वजा करा.
\frac{2x^{2}-x}{2}=\frac{15}{2}
दोन्ही बाजूंना 2 ने विभागा.
x^{2}-\frac{1}{2}x=\frac{15}{2}
2 ने केलेला भागाकार 2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} चा भागाकार करा, x टर्म चा गुणांक, -\frac{1}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{1}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{15}{2}+\frac{1}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{1}{4} वर्ग घ्या.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{121}{16}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{15}{2} ते \frac{1}{16} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x-\frac{1}{4}\right)^{2}=\frac{121}{16}
घटक x^{2}-\frac{1}{2}x+\frac{1}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{1}{4}=\frac{11}{4} x-\frac{1}{4}=-\frac{11}{4}
सरलीकृत करा.
x=3 x=-\frac{5}{2}
समीकरणाच्या दोन्ही बाजूस \frac{1}{4} जोडा.