घटक
2\left(x-3\right)\left(x-1\right)
मूल्यांकन करा
2\left(x-3\right)\left(x-1\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2\left(x^{2}-4x+3\right)
2 मधून घटक काढा.
a+b=-4 ab=1\times 3=3
x^{2}-4x+3 वाचारात घ्या. समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू x^{2}+ax+bx+3 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
a=-3 b=-1
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b नकारात्मक असल्याने, a व b दोन्ही नकारात्मक आहेत. फक्त असे पेअर सिस्टमचे निरसन आहे.
\left(x^{2}-3x\right)+\left(-x+3\right)
\left(x^{2}-3x\right)+\left(-x+3\right) प्रमाणे x^{2}-4x+3 पुन्हा लिहा.
x\left(x-3\right)-\left(x-3\right)
पहिल्या आणि -1 मध्ये अन्य समूहात x घटक काढा.
\left(x-3\right)\left(x-1\right)
वितरण गुणधर्माचा वापर करून x-3 सामान्य पदाचे घटक काढा.
2\left(x-3\right)\left(x-1\right)
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
2x^{2}-8x+6=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 6}}{2\times 2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 6}}{2\times 2}
वर्ग -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 6}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 2}
6 ला -8 वेळा गुणाकार करा.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 2}
64 ते -48 जोडा.
x=\frac{-\left(-8\right)±4}{2\times 2}
16 चा वर्गमूळ घ्या.
x=\frac{8±4}{2\times 2}
-8 ची विरूद्ध संख्या 8 आहे.
x=\frac{8±4}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{12}{4}
आता ± धन असताना समीकरण x=\frac{8±4}{4} सोडवा. 8 ते 4 जोडा.
x=3
12 ला 4 ने भागा.
x=\frac{4}{4}
आता ± ऋण असताना समीकरण x=\frac{8±4}{4} सोडवा. 8 मधून 4 वजा करा.
x=1
4 ला 4 ने भागा.
2x^{2}-8x+6=2\left(x-3\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 3 आणि x_{2} साठी 1 बदला.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}