x साठी सोडवा
x=\frac{\sqrt{1217}-35}{4}\approx -0.028618229
x=\frac{-\sqrt{1217}-35}{4}\approx -17.471381771
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x^{2}+35x=-1
दोन्ही बाजूंना 35x जोडा.
2x^{2}+35x+1=0
दोन्ही बाजूंना 1 जोडा.
x=\frac{-35±\sqrt{35^{2}-4\times 2}}{2\times 2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 2, b साठी 35 आणि c साठी 1 विकल्प म्हणून ठेवा.
x=\frac{-35±\sqrt{1225-4\times 2}}{2\times 2}
वर्ग 35.
x=\frac{-35±\sqrt{1225-8}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-35±\sqrt{1217}}{2\times 2}
1225 ते -8 जोडा.
x=\frac{-35±\sqrt{1217}}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{\sqrt{1217}-35}{4}
आता ± धन असताना समीकरण x=\frac{-35±\sqrt{1217}}{4} सोडवा. -35 ते \sqrt{1217} जोडा.
x=\frac{-\sqrt{1217}-35}{4}
आता ± ऋण असताना समीकरण x=\frac{-35±\sqrt{1217}}{4} सोडवा. -35 मधून \sqrt{1217} वजा करा.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
समीकरण आता सोडवली आहे.
2x^{2}+35x=-1
दोन्ही बाजूंना 35x जोडा.
\frac{2x^{2}+35x}{2}=-\frac{1}{2}
दोन्ही बाजूंना 2 ने विभागा.
x^{2}+\frac{35}{2}x=-\frac{1}{2}
2 ने केलेला भागाकार 2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{35}{4}\right)^{2}
\frac{35}{2} चा भागाकार करा, x टर्म चा गुणांक, \frac{35}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{35}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-\frac{1}{2}+\frac{1225}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{35}{4} वर्ग घ्या.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1217}{16}
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{1}{2} ते \frac{1225}{16} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x+\frac{35}{4}\right)^{2}=\frac{1217}{16}
घटक x^{2}+\frac{35}{2}x+\frac{1225}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1217}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{35}{4}=\frac{\sqrt{1217}}{4} x+\frac{35}{4}=-\frac{\sqrt{1217}}{4}
सरलीकृत करा.
x=\frac{\sqrt{1217}-35}{4} x=\frac{-\sqrt{1217}-35}{4}
समीकरणाच्या दोन्ही बाजूंमधून \frac{35}{4} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}