x साठी सोडवा
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=-1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x^{2}+15x-8x=-5
दोन्ही बाजूंकडून 8x वजा करा.
2x^{2}+7x=-5
7x मिळविण्यासाठी 15x आणि -8x एकत्र करा.
2x^{2}+7x+5=0
दोन्ही बाजूंना 5 जोडा.
a+b=7 ab=2\times 5=10
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू 2x^{2}+ax+bx+5 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,10 2,5
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b सकारात्मक असल्याने, a व b दोन्ही सकारात्मक आहेत. 10 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1+10=11 2+5=7
प्रत्येक पेअरची बेरीज करा.
a=2 b=5
बेरी 7 येत असलेल्या पेअरचे निरसन.
\left(2x^{2}+2x\right)+\left(5x+5\right)
\left(2x^{2}+2x\right)+\left(5x+5\right) प्रमाणे 2x^{2}+7x+5 पुन्हा लिहा.
2x\left(x+1\right)+5\left(x+1\right)
पहिल्या आणि 5 मध्ये अन्य समूहात 2x घटक काढा.
\left(x+1\right)\left(2x+5\right)
वितरण गुणधर्माचा वापर करून x+1 सामान्य पदाचे घटक काढा.
x=-1 x=-\frac{5}{2}
समीकरण निरसन शोधण्यासाठी, x+1=0 आणि 2x+5=0 सोडवा.
2x^{2}+15x-8x=-5
दोन्ही बाजूंकडून 8x वजा करा.
2x^{2}+7x=-5
7x मिळविण्यासाठी 15x आणि -8x एकत्र करा.
2x^{2}+7x+5=0
दोन्ही बाजूंना 5 जोडा.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 2, b साठी 7 आणि c साठी 5 विकल्प म्हणून ठेवा.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
वर्ग 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
5 ला -8 वेळा गुणाकार करा.
x=\frac{-7±\sqrt{9}}{2\times 2}
49 ते -40 जोडा.
x=\frac{-7±3}{2\times 2}
9 चा वर्गमूळ घ्या.
x=\frac{-7±3}{4}
2 ला 2 वेळा गुणाकार करा.
x=-\frac{4}{4}
आता ± धन असताना समीकरण x=\frac{-7±3}{4} सोडवा. -7 ते 3 जोडा.
x=-1
-4 ला 4 ने भागा.
x=-\frac{10}{4}
आता ± ऋण असताना समीकरण x=\frac{-7±3}{4} सोडवा. -7 मधून 3 वजा करा.
x=-\frac{5}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-10}{4} अंश निम्नतम टर्म्सला कमी करा.
x=-1 x=-\frac{5}{2}
समीकरण आता सोडवली आहे.
2x^{2}+15x-8x=-5
दोन्ही बाजूंकडून 8x वजा करा.
2x^{2}+7x=-5
7x मिळविण्यासाठी 15x आणि -8x एकत्र करा.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
दोन्ही बाजूंना 2 ने विभागा.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
2 ने केलेला भागाकार 2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
\frac{7}{2} चा भागाकार करा, x टर्म चा गुणांक, \frac{7}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{7}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{7}{4} वर्ग घ्या.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{5}{2} ते \frac{49}{16} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
घटक x^{2}+\frac{7}{2}x+\frac{49}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
सरलीकृत करा.
x=-1 x=-\frac{5}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{7}{4} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}