घटक
2\left(x+2\right)\left(x+3\right)
मूल्यांकन करा
2\left(x+2\right)\left(x+3\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2\left(x^{2}+5x+6\right)
2 मधून घटक काढा.
a+b=5 ab=1\times 6=6
x^{2}+5x+6 वाचारात घ्या. समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू x^{2}+ax+bx+6 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,6 2,3
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b सकारात्मक असल्याने, a व b दोन्ही सकारात्मक आहेत. 6 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1+6=7 2+3=5
प्रत्येक पेअरची बेरीज करा.
a=2 b=3
बेरी 5 येत असलेल्या पेअरचे निरसन.
\left(x^{2}+2x\right)+\left(3x+6\right)
\left(x^{2}+2x\right)+\left(3x+6\right) प्रमाणे x^{2}+5x+6 पुन्हा लिहा.
x\left(x+2\right)+3\left(x+2\right)
पहिल्या आणि 3 मध्ये अन्य समूहात x घटक काढा.
\left(x+2\right)\left(x+3\right)
वितरण गुणधर्माचा वापर करून x+2 सामान्य पदाचे घटक काढा.
2\left(x+2\right)\left(x+3\right)
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
2x^{2}+10x+12=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 12}}{2\times 2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-10±\sqrt{100-4\times 2\times 12}}{2\times 2}
वर्ग 10.
x=\frac{-10±\sqrt{100-8\times 12}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-10±\sqrt{100-96}}{2\times 2}
12 ला -8 वेळा गुणाकार करा.
x=\frac{-10±\sqrt{4}}{2\times 2}
100 ते -96 जोडा.
x=\frac{-10±2}{2\times 2}
4 चा वर्गमूळ घ्या.
x=\frac{-10±2}{4}
2 ला 2 वेळा गुणाकार करा.
x=-\frac{8}{4}
आता ± धन असताना समीकरण x=\frac{-10±2}{4} सोडवा. -10 ते 2 जोडा.
x=-2
-8 ला 4 ने भागा.
x=-\frac{12}{4}
आता ± ऋण असताना समीकरण x=\frac{-10±2}{4} सोडवा. -10 मधून 2 वजा करा.
x=-3
-12 ला 4 ने भागा.
2x^{2}+10x+12=2\left(x-\left(-2\right)\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी -2 आणि x_{2} साठी -3 बदला.
2x^{2}+10x+12=2\left(x+2\right)\left(x+3\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}