घटक
2t\left(t+2\right)
मूल्यांकन करा
2t\left(t+2\right)
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2\left(t^{2}+2t\right)
2 मधून घटक काढा.
t\left(t+2\right)
t^{2}+2t वाचारात घ्या. t मधून घटक काढा.
2t\left(t+2\right)
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
2t^{2}+4t=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
t=\frac{-4±\sqrt{4^{2}}}{2\times 2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
t=\frac{-4±4}{2\times 2}
4^{2} चा वर्गमूळ घ्या.
t=\frac{-4±4}{4}
2 ला 2 वेळा गुणाकार करा.
t=\frac{0}{4}
आता ± धन असताना समीकरण t=\frac{-4±4}{4} सोडवा. -4 ते 4 जोडा.
t=0
0 ला 4 ने भागा.
t=-\frac{8}{4}
आता ± ऋण असताना समीकरण t=\frac{-4±4}{4} सोडवा. -4 मधून 4 वजा करा.
t=-2
-8 ला 4 ने भागा.
2t^{2}+4t=2t\left(t-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 0 आणि x_{2} साठी -2 बदला.
2t^{2}+4t=2t\left(t+2\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}