घटक
\left(s-7\right)\left(2s+1\right)
मूल्यांकन करा
\left(s-7\right)\left(2s+1\right)
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-13 ab=2\left(-7\right)=-14
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू 2s^{2}+as+bs-7 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-14 2,-7
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -14 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-14=-13 2-7=-5
प्रत्येक पेअरची बेरीज करा.
a=-14 b=1
बेरी -13 येत असलेल्या पेअरचे निरसन.
\left(2s^{2}-14s\right)+\left(s-7\right)
\left(2s^{2}-14s\right)+\left(s-7\right) प्रमाणे 2s^{2}-13s-7 पुन्हा लिहा.
2s\left(s-7\right)+s-7
2s^{2}-14s मधील 2s घटक काढा.
\left(s-7\right)\left(2s+1\right)
वितरण गुणधर्माचा वापर करून s-7 सामान्य पदाचे घटक काढा.
2s^{2}-13s-7=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
s=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
s=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-7\right)}}{2\times 2}
वर्ग -13.
s=\frac{-\left(-13\right)±\sqrt{169-8\left(-7\right)}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
s=\frac{-\left(-13\right)±\sqrt{169+56}}{2\times 2}
-7 ला -8 वेळा गुणाकार करा.
s=\frac{-\left(-13\right)±\sqrt{225}}{2\times 2}
169 ते 56 जोडा.
s=\frac{-\left(-13\right)±15}{2\times 2}
225 चा वर्गमूळ घ्या.
s=\frac{13±15}{2\times 2}
-13 ची विरूद्ध संख्या 13 आहे.
s=\frac{13±15}{4}
2 ला 2 वेळा गुणाकार करा.
s=\frac{28}{4}
आता ± धन असताना समीकरण s=\frac{13±15}{4} सोडवा. 13 ते 15 जोडा.
s=7
28 ला 4 ने भागा.
s=-\frac{2}{4}
आता ± ऋण असताना समीकरण s=\frac{13±15}{4} सोडवा. 13 मधून 15 वजा करा.
s=-\frac{1}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-2}{4} अंश निम्नतम टर्म्सला कमी करा.
2s^{2}-13s-7=2\left(s-7\right)\left(s-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 7 आणि x_{2} साठी -\frac{1}{2} बदला.
2s^{2}-13s-7=2\left(s-7\right)\left(s+\frac{1}{2}\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
2s^{2}-13s-7=2\left(s-7\right)\times \frac{2s+1}{2}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{2} ते s जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
2s^{2}-13s-7=\left(s-7\right)\left(2s+1\right)
2 आणि 2 मधील सर्वात मोठा सामान्य घटक 2 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}