मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

a+b=-7 ab=2\times 3=6
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू 2x^{2}+ax+bx+3 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-6 -2,-3
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 6 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-6=-7 -2-3=-5
प्रत्‍येक पेअरची बेरीज करा.
a=-6 b=-1
बेरी -7 येत असलेल्‍या पेअरचे निरसन.
\left(2x^{2}-6x\right)+\left(-x+3\right)
\left(2x^{2}-6x\right)+\left(-x+3\right) प्रमाणे 2x^{2}-7x+3 पुन्हा लिहा.
2x\left(x-3\right)-\left(x-3\right)
पहिल्‍या आणि -1 मध्‍ये अन्‍य समूहात 2x घटक काढा.
\left(x-3\right)\left(2x-1\right)
वितरण गुणधर्माचा वापर करून x-3 सामान्य पदाचे घटक काढा.
x=3 x=\frac{1}{2}
समीकरण निरसन शोधण्‍यासाठी, x-3=0 आणि 2x-1=0 सोडवा.
2x^{2}-7x+3=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 2, b साठी -7 आणि c साठी 3 विकल्प म्हणून ठेवा.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
वर्ग -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
3 ला -8 वेळा गुणाकार करा.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
49 ते -24 जोडा.
x=\frac{-\left(-7\right)±5}{2\times 2}
25 चा वर्गमूळ घ्या.
x=\frac{7±5}{2\times 2}
-7 ची विरूद्ध संख्या 7 आहे.
x=\frac{7±5}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{12}{4}
आता ± धन असताना समीकरण x=\frac{7±5}{4} सोडवा. 7 ते 5 जोडा.
x=3
12 ला 4 ने भागा.
x=\frac{2}{4}
आता ± ऋण असताना समीकरण x=\frac{7±5}{4} सोडवा. 7 मधून 5 वजा करा.
x=\frac{1}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{2}{4} अंश निम्नतम टर्म्सला कमी करा.
x=3 x=\frac{1}{2}
समीकरण आता सोडवली आहे.
2x^{2}-7x+3=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
2x^{2}-7x+3-3=-3
समीकरणाच्या दोन्ही बाजूंमधून 3 वजा करा.
2x^{2}-7x=-3
3 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
दोन्ही बाजूंना 2 ने विभागा.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
2 ने केलेला भागाकार 2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} चा भागाकार करा, x टर्म चा गुणांक, -\frac{7}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{7}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{7}{4} वर्ग घ्या.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{3}{2} ते \frac{49}{16} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
घटक x^{2}-\frac{7}{2}x+\frac{49}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
सरलीकृत करा.
x=3 x=\frac{1}{2}
समीकरणाच्या दोन्ही बाजूस \frac{7}{4} जोडा.