x साठी सोडवा
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
x=4
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x^{2}+x-6-30=0
दोन्ही बाजूंकडून 30 वजा करा.
2x^{2}+x-36=0
-36 मिळविण्यासाठी -6 मधून 30 वजा करा.
a+b=1 ab=2\left(-36\right)=-72
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू 2x^{2}+ax+bx-36 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b सकारात्मक असल्याने, सकारात्मक नंबरमध्ये नकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -72 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
प्रत्येक पेअरची बेरीज करा.
a=-8 b=9
बेरी 1 येत असलेल्या पेअरचे निरसन.
\left(2x^{2}-8x\right)+\left(9x-36\right)
\left(2x^{2}-8x\right)+\left(9x-36\right) प्रमाणे 2x^{2}+x-36 पुन्हा लिहा.
2x\left(x-4\right)+9\left(x-4\right)
पहिल्या आणि 9 मध्ये अन्य समूहात 2x घटक काढा.
\left(x-4\right)\left(2x+9\right)
वितरण गुणधर्माचा वापर करून x-4 सामान्य पदाचे घटक काढा.
x=4 x=-\frac{9}{2}
समीकरण निरसन शोधण्यासाठी, x-4=0 आणि 2x+9=0 सोडवा.
2x^{2}+x-6=30
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
2x^{2}+x-6-30=30-30
समीकरणाच्या दोन्ही बाजूंमधून 30 वजा करा.
2x^{2}+x-6-30=0
30 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
2x^{2}+x-36=0
-6 मधून 30 वजा करा.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-36\right)}}{2\times 2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 2, b साठी 1 आणि c साठी -36 विकल्प म्हणून ठेवा.
x=\frac{-1±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
वर्ग 1.
x=\frac{-1±\sqrt{1-8\left(-36\right)}}{2\times 2}
2 ला -4 वेळा गुणाकार करा.
x=\frac{-1±\sqrt{1+288}}{2\times 2}
-36 ला -8 वेळा गुणाकार करा.
x=\frac{-1±\sqrt{289}}{2\times 2}
1 ते 288 जोडा.
x=\frac{-1±17}{2\times 2}
289 चा वर्गमूळ घ्या.
x=\frac{-1±17}{4}
2 ला 2 वेळा गुणाकार करा.
x=\frac{16}{4}
आता ± धन असताना समीकरण x=\frac{-1±17}{4} सोडवा. -1 ते 17 जोडा.
x=4
16 ला 4 ने भागा.
x=-\frac{18}{4}
आता ± ऋण असताना समीकरण x=\frac{-1±17}{4} सोडवा. -1 मधून 17 वजा करा.
x=-\frac{9}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-18}{4} अंश निम्नतम टर्म्सला कमी करा.
x=4 x=-\frac{9}{2}
समीकरण आता सोडवली आहे.
2x^{2}+x-6=30
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
2x^{2}+x-6-\left(-6\right)=30-\left(-6\right)
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
2x^{2}+x=30-\left(-6\right)
-6 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
2x^{2}+x=36
30 मधून -6 वजा करा.
\frac{2x^{2}+x}{2}=\frac{36}{2}
दोन्ही बाजूंना 2 ने विभागा.
x^{2}+\frac{1}{2}x=\frac{36}{2}
2 ने केलेला भागाकार 2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{1}{2}x=18
36 ला 2 ने भागा.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=18+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} चा भागाकार करा, x टर्म चा गुणांक, \frac{1}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{1}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{1}{4} वर्ग घ्या.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
18 ते \frac{1}{16} जोडा.
\left(x+\frac{1}{4}\right)^{2}=\frac{289}{16}
घटक x^{2}+\frac{1}{2}x+\frac{1}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{1}{4}=\frac{17}{4} x+\frac{1}{4}=-\frac{17}{4}
सरलीकृत करा.
x=4 x=-\frac{9}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{1}{4} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}