x_2 साठी सोडवा (जटिल उत्तर)
x_{2}=\left(\frac{|2^{x}|}{|\ln(x)|}\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}e^{\frac{Im(x)arg(-\frac{2^{x}}{\ln(x)})+iRe(x)arg(-\frac{2^{x}}{\ln(x)})}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
x\neq 0\text{ and }x\neq 1
x_2 साठी सोडवा
\left\{\begin{matrix}x_{2}=\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>1\right)\text{ or }\left(\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}>0\text{ and }x>0\text{ and }x<1\right)\text{ or }\left(\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}<0\text{ and }x>0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<1\right)\\x_{2}=-\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}\text{, }&\left(x>0\text{ and }\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<1\right)\text{ or }\left(x>0\text{ and }\left(-\frac{2^{x}}{\ln(x)}\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }x<1\right)\text{ or }\left(Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>1\right)\end{matrix}\right.
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}