मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

16-8x+x^{2}=0
दोन्ही बाजूंना x^{2} जोडा.
x^{2}-8x+16=0
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-8 ab=16
समीकरण सोडवण्‍यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-8x+16 घटक. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-16 -2,-8 -4,-4
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 16 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-16=-17 -2-8=-10 -4-4=-8
प्रत्‍येक पेअरची बेरीज करा.
a=-4 b=-4
बेरी -8 येत असलेल्‍या पेअरचे निरसन.
\left(x-4\right)\left(x-4\right)
मिळविलेले मूल्‍य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
\left(x-4\right)^{2}
द्विपदी वर्ग असे पुन्हा लिहा.
x=4
समीकरण निरसन शोधण्‍यासाठी, x-4=0 सोडवा.
16-8x+x^{2}=0
दोन्ही बाजूंना x^{2} जोडा.
x^{2}-8x+16=0
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-8 ab=1\times 16=16
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू x^{2}+ax+bx+16 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-16 -2,-8 -4,-4
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 16 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-16=-17 -2-8=-10 -4-4=-8
प्रत्‍येक पेअरची बेरीज करा.
a=-4 b=-4
बेरी -8 येत असलेल्‍या पेअरचे निरसन.
\left(x^{2}-4x\right)+\left(-4x+16\right)
\left(x^{2}-4x\right)+\left(-4x+16\right) प्रमाणे x^{2}-8x+16 पुन्हा लिहा.
x\left(x-4\right)-4\left(x-4\right)
पहिल्‍या आणि -4 मध्‍ये अन्‍य समूहात x घटक काढा.
\left(x-4\right)\left(x-4\right)
वितरण गुणधर्माचा वापर करून x-4 सामान्य पदाचे घटक काढा.
\left(x-4\right)^{2}
द्विपदी वर्ग असे पुन्हा लिहा.
x=4
समीकरण निरसन शोधण्‍यासाठी, x-4=0 सोडवा.
16-8x+x^{2}=0
दोन्ही बाजूंना x^{2} जोडा.
x^{2}-8x+16=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -8 आणि c साठी 16 विकल्प म्हणून ठेवा.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
वर्ग -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
16 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
64 ते -64 जोडा.
x=-\frac{-8}{2}
0 चा वर्गमूळ घ्या.
x=\frac{8}{2}
-8 ची विरूद्ध संख्या 8 आहे.
x=4
8 ला 2 ने भागा.
16-8x+x^{2}=0
दोन्ही बाजूंना x^{2} जोडा.
-8x+x^{2}=-16
दोन्ही बाजूंकडून 16 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x^{2}-8x=-16
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
-8 चा भागाकार करा, x टर्म चा गुणांक, -4 मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -4 चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-8x+16=-16+16
वर्ग -4.
x^{2}-8x+16=0
-16 ते 16 जोडा.
\left(x-4\right)^{2}=0
घटक x^{2}-8x+16. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-4=0 x-4=0
सरलीकृत करा.
x=4 x=4
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=4
समीकरण आता सोडवली आहे. निरसन समान आहेत.