मुख्य सामग्री वगळा
घटक
Tick mark Image
मूल्यांकन करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3\left(5x^{2}+4x+3\right)
3 मधून घटक काढा. 5x^{2}+4x+3 बहुपदीचे अवयव पाडलेले नाहीत कारण त्यांच्याकडे कोणतेही परिमेय मूळ नाहीत.
15x^{2}+12x+9=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 15\times 9}}{2\times 15}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-12±\sqrt{144-4\times 15\times 9}}{2\times 15}
वर्ग 12.
x=\frac{-12±\sqrt{144-60\times 9}}{2\times 15}
15 ला -4 वेळा गुणाकार करा.
x=\frac{-12±\sqrt{144-540}}{2\times 15}
9 ला -60 वेळा गुणाकार करा.
x=\frac{-12±\sqrt{-396}}{2\times 15}
144 ते -540 जोडा.
15x^{2}+12x+9
एका ऋण संख्येचे वर्गमूळ वास्तविक क्षेत्रामध्ये परिभाषित केले नसल्यामुळे, कोणतेही निरसन नाहीत. वर्गसमीकरण बहुपद काढता येणार नाही.