घटक
\left(1-4x\right)\left(3x+1\right)
मूल्यांकन करा
\left(1-4x\right)\left(3x+1\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
-12x^{2}-x+1
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-1 ab=-12=-12
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू -12x^{2}+ax+bx+1 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-12 2,-6 3,-4
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -12 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-12=-11 2-6=-4 3-4=-1
प्रत्येक पेअरची बेरीज करा.
a=3 b=-4
बेरी -1 येत असलेल्या पेअरचे निरसन.
\left(-12x^{2}+3x\right)+\left(-4x+1\right)
\left(-12x^{2}+3x\right)+\left(-4x+1\right) प्रमाणे -12x^{2}-x+1 पुन्हा लिहा.
3x\left(-4x+1\right)-4x+1
-12x^{2}+3x मधील 3x घटक काढा.
\left(-4x+1\right)\left(3x+1\right)
वितरण गुणधर्माचा वापर करून -4x+1 सामान्य पदाचे घटक काढा.
-12x^{2}-x+1=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2\left(-12\right)}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-12\right)}
-12 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-12\right)}
1 ते 48 जोडा.
x=\frac{-\left(-1\right)±7}{2\left(-12\right)}
49 चा वर्गमूळ घ्या.
x=\frac{1±7}{2\left(-12\right)}
-1 ची विरूद्ध संख्या 1 आहे.
x=\frac{1±7}{-24}
-12 ला 2 वेळा गुणाकार करा.
x=\frac{8}{-24}
आता ± धन असताना समीकरण x=\frac{1±7}{-24} सोडवा. 1 ते 7 जोडा.
x=-\frac{1}{3}
8 एक्स्ट्रॅक्ट आणि रद्द करून \frac{8}{-24} अंश निम्नतम टर्म्सला कमी करा.
x=-\frac{6}{-24}
आता ± ऋण असताना समीकरण x=\frac{1±7}{-24} सोडवा. 1 मधून 7 वजा करा.
x=\frac{1}{4}
6 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-6}{-24} अंश निम्नतम टर्म्सला कमी करा.
-12x^{2}-x+1=-12\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\frac{1}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी -\frac{1}{3} आणि x_{2} साठी \frac{1}{4} बदला.
-12x^{2}-x+1=-12\left(x+\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
-12x^{2}-x+1=-12\times \frac{-3x-1}{-3}\left(x-\frac{1}{4}\right)
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{3} ते x जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
-12x^{2}-x+1=-12\times \frac{-3x-1}{-3}\times \frac{-4x+1}{-4}
सामान्य विभाजक शोधून आणि अंशांची वजाबाकी करून x मधून \frac{1}{4} वजा करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
-12x^{2}-x+1=-12\times \frac{\left(-3x-1\right)\left(-4x+1\right)}{-3\left(-4\right)}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{-4x+1}{-4} चा \frac{-3x-1}{-3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
-12x^{2}-x+1=-12\times \frac{\left(-3x-1\right)\left(-4x+1\right)}{12}
-4 ला -3 वेळा गुणाकार करा.
-12x^{2}-x+1=-\left(-3x-1\right)\left(-4x+1\right)
-12 आणि 12 मधील सर्वात मोठा सामान्य घटक 12 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}