मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
विस्तृत करा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
x^{2}-y^{2} घटक.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ला 1 वेळा गुणाकार करा.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} आणि \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right) मध्ये गुणाकार करा.
\frac{xy}{\left(x+y\right)\left(x-y\right)}
x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{xy}{x^{2}-y^{2}}
विस्तृत करा \left(x+y\right)\left(x-y\right).
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
x^{2}-y^{2} घटक.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ला 1 वेळा गुणाकार करा.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} आणि \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right) मध्ये गुणाकार करा.
\frac{xy}{\left(x+y\right)\left(x-y\right)}
x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{xy}{x^{2}-y^{2}}
विस्तृत करा \left(x+y\right)\left(x-y\right).