मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x^{2}-5x+6=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
a+b=-5 ab=6
समीकरण सोडवण्‍यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-5x+6 घटक. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-6 -2,-3
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 6 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-6=-7 -2-3=-5
प्रत्‍येक पेअरची बेरीज करा.
a=-3 b=-2
बेरी -5 येत असलेल्‍या पेअरचे निरसन.
\left(x-3\right)\left(x-2\right)
मिळविलेले मूल्‍य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
x=3 x=2
समीकरण निरसन शोधण्‍यासाठी, x-3=0 आणि x-2=0 सोडवा.
x^{2}-5x+6=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
a+b=-5 ab=1\times 6=6
समीकरण सोडवण्‍यासाठी, समूहीकृत करून डाव्‍या हाताच्‍या बाजूला ठेवा. अगोदर, डाव्‍या हाताची बाजू x^{2}+ax+bx+6 म्‍हणून पुन्‍हा लिहावी लागेल. a आणि b शोधण्‍यासाठी, सोडवण्‍यासाठी सिस्‍टम सेट करा.
-1,-6 -2,-3
ab सकारात्‍मक असल्‍यापासून a व b मध्‍ये समान चिन्‍ह आहे. a+b नकारात्‍मक असल्‍याने, a व b दोन्‍ही नकारात्‍मक आहेत. 6 उत्‍पादन देत असलेल्‍या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-6=-7 -2-3=-5
प्रत्‍येक पेअरची बेरीज करा.
a=-3 b=-2
बेरी -5 येत असलेल्‍या पेअरचे निरसन.
\left(x^{2}-3x\right)+\left(-2x+6\right)
\left(x^{2}-3x\right)+\left(-2x+6\right) प्रमाणे x^{2}-5x+6 पुन्हा लिहा.
x\left(x-3\right)-2\left(x-3\right)
पहिल्‍या आणि -2 मध्‍ये अन्‍य समूहात x घटक काढा.
\left(x-3\right)\left(x-2\right)
वितरण गुणधर्माचा वापर करून x-3 सामान्य पदाचे घटक काढा.
x=3 x=2
समीकरण निरसन शोधण्‍यासाठी, x-3=0 आणि x-2=0 सोडवा.
x^{2}-5x+6=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -5 आणि c साठी 6 विकल्प म्हणून ठेवा.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
वर्ग -5.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
6 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-5\right)±\sqrt{1}}{2}
25 ते -24 जोडा.
x=\frac{-\left(-5\right)±1}{2}
1 चा वर्गमूळ घ्या.
x=\frac{5±1}{2}
-5 ची विरूद्ध संख्या 5 आहे.
x=\frac{6}{2}
आता ± धन असताना समीकरण x=\frac{5±1}{2} सोडवा. 5 ते 1 जोडा.
x=3
6 ला 2 ने भागा.
x=\frac{4}{2}
आता ± ऋण असताना समीकरण x=\frac{5±1}{2} सोडवा. 5 मधून 1 वजा करा.
x=2
4 ला 2 ने भागा.
x=3 x=2
समीकरण आता सोडवली आहे.
x^{2}-5x+6=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
x^{2}-5x=-6
दोन्ही बाजूंकडून 6 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
-5 चा भागाकार करा, x टर्म चा गुणांक, -\frac{5}{2} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{5}{2} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{5}{2} वर्ग घ्या.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
-6 ते \frac{25}{4} जोडा.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
घटक x^{2}-5x+\frac{25}{4}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
सरलीकृत करा.
x=3 x=2
समीकरणाच्या दोन्ही बाजूस \frac{5}{2} जोडा.