x साठी सोडवा
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x^{2}+2x-5=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
a+b=2 ab=3\left(-5\right)=-15
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू 3x^{2}+ax+bx-5 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,15 -3,5
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b सकारात्मक असल्याने, सकारात्मक नंबरमध्ये नकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -15 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1+15=14 -3+5=2
प्रत्येक पेअरची बेरीज करा.
a=-3 b=5
बेरी 2 येत असलेल्या पेअरचे निरसन.
\left(3x^{2}-3x\right)+\left(5x-5\right)
\left(3x^{2}-3x\right)+\left(5x-5\right) प्रमाणे 3x^{2}+2x-5 पुन्हा लिहा.
3x\left(x-1\right)+5\left(x-1\right)
पहिल्या आणि 5 मध्ये अन्य समूहात 3x घटक काढा.
\left(x-1\right)\left(3x+5\right)
वितरण गुणधर्माचा वापर करून x-1 सामान्य पदाचे घटक काढा.
x=1 x=-\frac{5}{3}
समीकरण निरसन शोधण्यासाठी, x-1=0 आणि 3x+5=0 सोडवा.
3x^{2}+2x-5=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-5\right)}}{2\times 3}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 3, b साठी 2 आणि c साठी -5 विकल्प म्हणून ठेवा.
x=\frac{-2±\sqrt{4-4\times 3\left(-5\right)}}{2\times 3}
वर्ग 2.
x=\frac{-2±\sqrt{4-12\left(-5\right)}}{2\times 3}
3 ला -4 वेळा गुणाकार करा.
x=\frac{-2±\sqrt{4+60}}{2\times 3}
-5 ला -12 वेळा गुणाकार करा.
x=\frac{-2±\sqrt{64}}{2\times 3}
4 ते 60 जोडा.
x=\frac{-2±8}{2\times 3}
64 चा वर्गमूळ घ्या.
x=\frac{-2±8}{6}
3 ला 2 वेळा गुणाकार करा.
x=\frac{6}{6}
आता ± धन असताना समीकरण x=\frac{-2±8}{6} सोडवा. -2 ते 8 जोडा.
x=1
6 ला 6 ने भागा.
x=-\frac{10}{6}
आता ± ऋण असताना समीकरण x=\frac{-2±8}{6} सोडवा. -2 मधून 8 वजा करा.
x=-\frac{5}{3}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-10}{6} अंश निम्नतम टर्म्सला कमी करा.
x=1 x=-\frac{5}{3}
समीकरण आता सोडवली आहे.
3x^{2}+2x-5=0
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
3x^{2}+2x=5
दोन्ही बाजूंना 5 जोडा. कोणत्याही संख्येत शून्य अधिक केल्यास तीच संख्या मिळते.
\frac{3x^{2}+2x}{3}=\frac{5}{3}
दोन्ही बाजूंना 3 ने विभागा.
x^{2}+\frac{2}{3}x=\frac{5}{3}
3 ने केलेला भागाकार 3 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(\frac{1}{3}\right)^{2}
\frac{2}{3} चा भागाकार करा, x टर्म चा गुणांक, \frac{1}{3} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{1}{3} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{1}{3} वर्ग घ्या.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{3} ते \frac{1}{9} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x+\frac{1}{3}\right)^{2}=\frac{16}{9}
घटक x^{2}+\frac{2}{3}x+\frac{1}{9}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{1}{3}=\frac{4}{3} x+\frac{1}{3}=-\frac{4}{3}
सरलीकृत करा.
x=1 x=-\frac{5}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{1}{3} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}