x साठी सोडवा
x=\frac{1}{2}=0.5
x=-1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-1 ab=-2=-2
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू -2x^{2}+ax+bx+1 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
a=1 b=-2
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. फक्त असे पेअर सिस्टमचे निरसन आहे.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
\left(-2x^{2}+x\right)+\left(-2x+1\right) प्रमाणे -2x^{2}-x+1 पुन्हा लिहा.
-x\left(2x-1\right)-\left(2x-1\right)
पहिल्या आणि -1 मध्ये अन्य समूहात -x घटक काढा.
\left(2x-1\right)\left(-x-1\right)
वितरण गुणधर्माचा वापर करून 2x-1 सामान्य पदाचे घटक काढा.
x=\frac{1}{2} x=-1
समीकरण निरसन शोधण्यासाठी, 2x-1=0 आणि -x-1=0 सोडवा.
-2x^{2}-x+1=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी -2, b साठी -1 आणि c साठी 1 विकल्प म्हणून ठेवा.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-2\right)}
-2 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-2\right)}
1 ते 8 जोडा.
x=\frac{-\left(-1\right)±3}{2\left(-2\right)}
9 चा वर्गमूळ घ्या.
x=\frac{1±3}{2\left(-2\right)}
-1 ची विरूद्ध संख्या 1 आहे.
x=\frac{1±3}{-4}
-2 ला 2 वेळा गुणाकार करा.
x=\frac{4}{-4}
आता ± धन असताना समीकरण x=\frac{1±3}{-4} सोडवा. 1 ते 3 जोडा.
x=-1
4 ला -4 ने भागा.
x=-\frac{2}{-4}
आता ± ऋण असताना समीकरण x=\frac{1±3}{-4} सोडवा. 1 मधून 3 वजा करा.
x=\frac{1}{2}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-2}{-4} अंश निम्नतम टर्म्सला कमी करा.
x=-1 x=\frac{1}{2}
समीकरण आता सोडवली आहे.
-2x^{2}-x+1=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
-2x^{2}-x+1-1=-1
समीकरणाच्या दोन्ही बाजूंमधून 1 वजा करा.
-2x^{2}-x=-1
1 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
\frac{-2x^{2}-x}{-2}=-\frac{1}{-2}
दोन्ही बाजूंना -2 ने विभागा.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{1}{-2}
-2 ने केलेला भागाकार -2 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{1}{2}x=-\frac{1}{-2}
-1 ला -2 ने भागा.
x^{2}+\frac{1}{2}x=\frac{1}{2}
-1 ला -2 ने भागा.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} चा भागाकार करा, x टर्म चा गुणांक, \frac{1}{4} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{1}{4} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{1}{4} वर्ग घ्या.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{2} ते \frac{1}{16} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
घटक x^{2}+\frac{1}{2}x+\frac{1}{16}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
सरलीकृत करा.
x=\frac{1}{2} x=-1
समीकरणाच्या दोन्ही बाजूंमधून \frac{1}{4} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}