घटक
\left(1-x\right)\left(9x+10\right)
मूल्यांकन करा
\left(1-x\right)\left(9x+10\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-1 ab=-9\times 10=-90
समूहीकृत करून अभिव्यक्ती काढा. अगोदर, डाव्या हाताची बाजू -9x^{2}+ax+bx+10 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -90 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
प्रत्येक पेअरची बेरीज करा.
a=9 b=-10
बेरी -1 येत असलेल्या पेअरचे निरसन.
\left(-9x^{2}+9x\right)+\left(-10x+10\right)
\left(-9x^{2}+9x\right)+\left(-10x+10\right) प्रमाणे -9x^{2}-x+10 पुन्हा लिहा.
9x\left(-x+1\right)+10\left(-x+1\right)
पहिल्या आणि 10 मध्ये अन्य समूहात 9x घटक काढा.
\left(-x+1\right)\left(9x+10\right)
वितरण गुणधर्माचा वापर करून -x+1 सामान्य पदाचे घटक काढा.
-9x^{2}-x+10=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-9\right)\times 10}}{2\left(-9\right)}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-1\right)±\sqrt{1+36\times 10}}{2\left(-9\right)}
-9 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\left(-9\right)}
10 ला 36 वेळा गुणाकार करा.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\left(-9\right)}
1 ते 360 जोडा.
x=\frac{-\left(-1\right)±19}{2\left(-9\right)}
361 चा वर्गमूळ घ्या.
x=\frac{1±19}{2\left(-9\right)}
-1 ची विरूद्ध संख्या 1 आहे.
x=\frac{1±19}{-18}
-9 ला 2 वेळा गुणाकार करा.
x=\frac{20}{-18}
आता ± धन असताना समीकरण x=\frac{1±19}{-18} सोडवा. 1 ते 19 जोडा.
x=-\frac{10}{9}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{20}{-18} अंश निम्नतम टर्म्सला कमी करा.
x=-\frac{18}{-18}
आता ± ऋण असताना समीकरण x=\frac{1±19}{-18} सोडवा. 1 मधून 19 वजा करा.
x=1
-18 ला -18 ने भागा.
-9x^{2}-x+10=-9\left(x-\left(-\frac{10}{9}\right)\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी -\frac{10}{9} आणि x_{2} साठी 1 बदला.
-9x^{2}-x+10=-9\left(x+\frac{10}{9}\right)\left(x-1\right)
p-\left(-q\right) ते p+q फॉर्मचे सर्व एक्सप्रेशन सरलीकृत करा.
-9x^{2}-x+10=-9\times \frac{-9x-10}{-9}\left(x-1\right)
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{10}{9} ते x जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
-9x^{2}-x+10=\left(-9x-10\right)\left(x-1\right)
-9 आणि 9 मधील सर्वात मोठा सामान्य घटक 9 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}