k साठी सोडवा
\left\{\begin{matrix}k=\sqrt{-\frac{4x^{2}-20x-x_{2}+16}{x_{2}}}\text{; }k=-\sqrt{-\frac{4x^{2}-20x-x_{2}+16}{x_{2}}}\text{, }&x\neq 4\text{ and }x\neq 1\text{ and }\left(x_{2}>0\text{ or }x_{2}\leq 4x^{2}-20x+16\right)\text{ and }\left(x_{2}<0\text{ or }x_{2}\geq 4x^{2}-20x+16\right)\text{ and }\left(x_{2}=4x^{2}-20x+16\text{ or }x_{2}\neq 0\right)\\k\in \mathrm{R}\setminus 1,-1\text{, }&\left(x_{2}=0\text{ and }x=1\right)\text{ or }\left(x_{2}=0\text{ and }x=4\right)\end{matrix}\right.
x साठी सोडवा
x=\frac{\sqrt{9+x_{2}-x_{2}k^{2}}+5}{2}
x=\frac{-\sqrt{9+x_{2}-x_{2}k^{2}}+5}{2}\text{, }\left(x_{2}\geq -\frac{9}{1-k^{2}}\text{ and }k>-1\text{ and }|k|<1\right)\text{ or }\left(x_{2}=-\frac{9}{1-k^{2}}\text{ and }|k|\neq 1\right)\text{ or }\left(|k|>1\text{ and }x_{2}\leq -\frac{9}{1-k^{2}}\right)
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}