मुख्य सामग्री वगळा
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\left(x+10\right)^{2}=25
\left(x+10\right)^{2} मिळविण्यासाठी x+10 आणि x+10 चा गुणाकार करा.
x^{2}+20x+100=25
\left(x+10\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
x^{2}+20x+100-25=0
दोन्ही बाजूंकडून 25 वजा करा.
x^{2}+20x+75=0
75 मिळविण्यासाठी 100 मधून 25 वजा करा.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी 20 आणि c साठी 75 विकल्प म्हणून ठेवा.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
वर्ग 20.
x=\frac{-20±\sqrt{400-300}}{2}
75 ला -4 वेळा गुणाकार करा.
x=\frac{-20±\sqrt{100}}{2}
400 ते -300 जोडा.
x=\frac{-20±10}{2}
100 चा वर्गमूळ घ्या.
x=-\frac{10}{2}
आता ± धन असताना समीकरण x=\frac{-20±10}{2} सोडवा. -20 ते 10 जोडा.
x=-5
-10 ला 2 ने भागा.
x=-\frac{30}{2}
आता ± ऋण असताना समीकरण x=\frac{-20±10}{2} सोडवा. -20 मधून 10 वजा करा.
x=-15
-30 ला 2 ने भागा.
x=-5 x=-15
समीकरण आता सोडवली आहे.
\left(x+10\right)^{2}=25
\left(x+10\right)^{2} मिळविण्यासाठी x+10 आणि x+10 चा गुणाकार करा.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+10=5 x+10=-5
सरलीकृत करा.
x=-5 x=-15
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.