a साठी सोडवा
a=-\frac{3b}{4}+\frac{1}{12b}
b\neq 0
b साठी सोडवा
b=\frac{\sqrt{4a^{2}+1}-2a}{3}
b=\frac{-\sqrt{4a^{2}+1}-2a}{3}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
4a^{2}+12ab+9b^{2}=4a^{2}+1
\left(2a+3b\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
4a^{2}+12ab+9b^{2}-4a^{2}=1
दोन्ही बाजूंकडून 4a^{2} वजा करा.
12ab+9b^{2}=1
0 मिळविण्यासाठी 4a^{2} आणि -4a^{2} एकत्र करा.
12ab=1-9b^{2}
दोन्ही बाजूंकडून 9b^{2} वजा करा.
12ba=1-9b^{2}
समीकरण मानक रूपामध्ये आहे.
\frac{12ba}{12b}=\frac{1-9b^{2}}{12b}
दोन्ही बाजूंना 12b ने विभागा.
a=\frac{1-9b^{2}}{12b}
12b ने केलेला भागाकार 12b ने केलेला गुणाकार पूर्ववत करतो.
a=-\frac{3b}{4}+\frac{1}{12b}
-9b^{2}+1 ला 12b ने भागा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}