x साठी सोडवा
x = \frac{100}{3} = 33\frac{1}{3} \approx 33.333333333
x=-100
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 च्या पॉवरसाठी 100 मोजा आणि 10000 मिळवा.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 मिळविण्यासाठी 10000 आणि 10000 जोडा.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(2x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x-4x^{2}=400x+10000
दोन्ही बाजूंकडून 4x^{2} वजा करा.
20000-3x^{2}+200x=400x+10000
-3x^{2} मिळविण्यासाठी x^{2} आणि -4x^{2} एकत्र करा.
20000-3x^{2}+200x-400x=10000
दोन्ही बाजूंकडून 400x वजा करा.
20000-3x^{2}-200x=10000
-200x मिळविण्यासाठी 200x आणि -400x एकत्र करा.
20000-3x^{2}-200x-10000=0
दोन्ही बाजूंकडून 10000 वजा करा.
10000-3x^{2}-200x=0
10000 मिळविण्यासाठी 20000 मधून 10000 वजा करा.
-3x^{2}-200x+10000=0
मानक फॉर्ममध्ये ठेवण्यासाठी बहुपदी पुन्हा मांडा. टर्म्स उच्च पॉवरपासून निम्न पॉवरपर्यंत या क्रमात ठेवा.
a+b=-200 ab=-3\times 10000=-30000
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू -3x^{2}+ax+bx+10000 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-30000 2,-15000 3,-10000 4,-7500 5,-6000 6,-5000 8,-3750 10,-3000 12,-2500 15,-2000 16,-1875 20,-1500 24,-1250 25,-1200 30,-1000 40,-750 48,-625 50,-600 60,-500 75,-400 80,-375 100,-300 120,-250 125,-240 150,-200
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -30000 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-30000=-29999 2-15000=-14998 3-10000=-9997 4-7500=-7496 5-6000=-5995 6-5000=-4994 8-3750=-3742 10-3000=-2990 12-2500=-2488 15-2000=-1985 16-1875=-1859 20-1500=-1480 24-1250=-1226 25-1200=-1175 30-1000=-970 40-750=-710 48-625=-577 50-600=-550 60-500=-440 75-400=-325 80-375=-295 100-300=-200 120-250=-130 125-240=-115 150-200=-50
प्रत्येक पेअरची बेरीज करा.
a=100 b=-300
बेरी -200 येत असलेल्या पेअरचे निरसन.
\left(-3x^{2}+100x\right)+\left(-300x+10000\right)
\left(-3x^{2}+100x\right)+\left(-300x+10000\right) प्रमाणे -3x^{2}-200x+10000 पुन्हा लिहा.
-x\left(3x-100\right)-100\left(3x-100\right)
पहिल्या आणि -100 मध्ये अन्य समूहात -x घटक काढा.
\left(3x-100\right)\left(-x-100\right)
वितरण गुणधर्माचा वापर करून 3x-100 सामान्य पदाचे घटक काढा.
x=\frac{100}{3} x=-100
समीकरण निरसन शोधण्यासाठी, 3x-100=0 आणि -x-100=0 सोडवा.
10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 च्या पॉवरसाठी 100 मोजा आणि 10000 मिळवा.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 मिळविण्यासाठी 10000 आणि 10000 जोडा.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(2x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x-4x^{2}=400x+10000
दोन्ही बाजूंकडून 4x^{2} वजा करा.
20000-3x^{2}+200x=400x+10000
-3x^{2} मिळविण्यासाठी x^{2} आणि -4x^{2} एकत्र करा.
20000-3x^{2}+200x-400x=10000
दोन्ही बाजूंकडून 400x वजा करा.
20000-3x^{2}-200x=10000
-200x मिळविण्यासाठी 200x आणि -400x एकत्र करा.
20000-3x^{2}-200x-10000=0
दोन्ही बाजूंकडून 10000 वजा करा.
10000-3x^{2}-200x=0
10000 मिळविण्यासाठी 20000 मधून 10000 वजा करा.
-3x^{2}-200x+10000=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-3\right)\times 10000}}{2\left(-3\right)}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी -3, b साठी -200 आणि c साठी 10000 विकल्प म्हणून ठेवा.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-3\right)\times 10000}}{2\left(-3\right)}
वर्ग -200.
x=\frac{-\left(-200\right)±\sqrt{40000+12\times 10000}}{2\left(-3\right)}
-3 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-200\right)±\sqrt{40000+120000}}{2\left(-3\right)}
10000 ला 12 वेळा गुणाकार करा.
x=\frac{-\left(-200\right)±\sqrt{160000}}{2\left(-3\right)}
40000 ते 120000 जोडा.
x=\frac{-\left(-200\right)±400}{2\left(-3\right)}
160000 चा वर्गमूळ घ्या.
x=\frac{200±400}{2\left(-3\right)}
-200 ची विरूद्ध संख्या 200 आहे.
x=\frac{200±400}{-6}
-3 ला 2 वेळा गुणाकार करा.
x=\frac{600}{-6}
आता ± धन असताना समीकरण x=\frac{200±400}{-6} सोडवा. 200 ते 400 जोडा.
x=-100
600 ला -6 ने भागा.
x=-\frac{200}{-6}
आता ± ऋण असताना समीकरण x=\frac{200±400}{-6} सोडवा. 200 मधून 400 वजा करा.
x=\frac{100}{3}
2 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-200}{-6} अंश निम्नतम टर्म्सला कमी करा.
x=-100 x=\frac{100}{3}
समीकरण आता सोडवली आहे.
10000+\left(x+100\right)^{2}=\left(2x+100\right)^{2}
2 च्या पॉवरसाठी 100 मोजा आणि 10000 मिळवा.
10000+x^{2}+200x+10000=\left(2x+100\right)^{2}
\left(x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x=\left(2x+100\right)^{2}
20000 मिळविण्यासाठी 10000 आणि 10000 जोडा.
20000+x^{2}+200x=4x^{2}+400x+10000
\left(2x+100\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
20000+x^{2}+200x-4x^{2}=400x+10000
दोन्ही बाजूंकडून 4x^{2} वजा करा.
20000-3x^{2}+200x=400x+10000
-3x^{2} मिळविण्यासाठी x^{2} आणि -4x^{2} एकत्र करा.
20000-3x^{2}+200x-400x=10000
दोन्ही बाजूंकडून 400x वजा करा.
20000-3x^{2}-200x=10000
-200x मिळविण्यासाठी 200x आणि -400x एकत्र करा.
-3x^{2}-200x=10000-20000
दोन्ही बाजूंकडून 20000 वजा करा.
-3x^{2}-200x=-10000
-10000 मिळविण्यासाठी 10000 मधून 20000 वजा करा.
\frac{-3x^{2}-200x}{-3}=-\frac{10000}{-3}
दोन्ही बाजूंना -3 ने विभागा.
x^{2}+\left(-\frac{200}{-3}\right)x=-\frac{10000}{-3}
-3 ने केलेला भागाकार -3 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}+\frac{200}{3}x=-\frac{10000}{-3}
-200 ला -3 ने भागा.
x^{2}+\frac{200}{3}x=\frac{10000}{3}
-10000 ला -3 ने भागा.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=\frac{10000}{3}+\left(\frac{100}{3}\right)^{2}
\frac{200}{3} चा भागाकार करा, x टर्म चा गुणांक, \frac{100}{3} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना \frac{100}{3} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{10000}{3}+\frac{10000}{9}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून \frac{100}{3} वर्ग घ्या.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{40000}{9}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{10000}{3} ते \frac{10000}{9} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
\left(x+\frac{100}{3}\right)^{2}=\frac{40000}{9}
घटक x^{2}+\frac{200}{3}x+\frac{10000}{9}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{40000}{9}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x+\frac{100}{3}=\frac{200}{3} x+\frac{100}{3}=-\frac{200}{3}
सरलीकृत करा.
x=\frac{100}{3} x=-100
समीकरणाच्या दोन्ही बाजूंमधून \frac{100}{3} वजा करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}