मूल्यांकन करा
\frac{rt}{3}
विस्तृत करा
\frac{rt}{3}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
वर्ग \frac{1}{4}r-s+\frac{2}{3}t.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\left(r+\frac{1}{4}s\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2} च्या विरुद्ध शोधण्यासाठी, प्रत्येक टर्मच्या विरुद्ध शोधा.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-\frac{15}{16}r^{2} मिळविण्यासाठी \frac{1}{16}r^{2} आणि -r^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-rs मिळविण्यासाठी -\frac{1}{2}rs आणि -\frac{1}{2}rs एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\frac{15}{16}s^{2} मिळविण्यासाठी s^{2} आणि -\frac{1}{16}s^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\left(s-\frac{2}{3}t\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2} च्या विरुद्ध शोधण्यासाठी, प्रत्येक टर्मच्या विरुद्ध शोधा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-\frac{1}{16}s^{2} मिळविण्यासाठी \frac{15}{16}s^{2} आणि -s^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
0 मिळविण्यासाठी -\frac{4}{3}st आणि \frac{4}{3}st एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
0 मिळविण्यासाठी \frac{4}{9}t^{2} आणि -\frac{4}{9}t^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
\frac{1}{16} ला r+s ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
\frac{1}{16}r+\frac{1}{16}s ला 15r+s ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
0 मिळविण्यासाठी -\frac{15}{16}r^{2} आणि \frac{15}{16}r^{2} एकत्र करा.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
0 मिळविण्यासाठी -rs आणि rs एकत्र करा.
\frac{1}{3}rt
0 मिळविण्यासाठी -\frac{1}{16}s^{2} आणि \frac{1}{16}s^{2} एकत्र करा.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
वर्ग \frac{1}{4}r-s+\frac{2}{3}t.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\left(r+\frac{1}{4}s\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a+b\right)^{2}=a^{2}+2ab+b^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2} च्या विरुद्ध शोधण्यासाठी, प्रत्येक टर्मच्या विरुद्ध शोधा.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-\frac{15}{16}r^{2} मिळविण्यासाठी \frac{1}{16}r^{2} आणि -r^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-rs मिळविण्यासाठी -\frac{1}{2}rs आणि -\frac{1}{2}rs एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\frac{15}{16}s^{2} मिळविण्यासाठी s^{2} आणि -\frac{1}{16}s^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\left(s-\frac{2}{3}t\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2} च्या विरुद्ध शोधण्यासाठी, प्रत्येक टर्मच्या विरुद्ध शोधा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
-\frac{1}{16}s^{2} मिळविण्यासाठी \frac{15}{16}s^{2} आणि -s^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
0 मिळविण्यासाठी -\frac{4}{3}st आणि \frac{4}{3}st एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
0 मिळविण्यासाठी \frac{4}{9}t^{2} आणि -\frac{4}{9}t^{2} एकत्र करा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
\frac{1}{16} ला r+s ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
\frac{1}{16}r+\frac{1}{16}s ला 15r+s ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
0 मिळविण्यासाठी -\frac{15}{16}r^{2} आणि \frac{15}{16}r^{2} एकत्र करा.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
0 मिळविण्यासाठी -rs आणि rs एकत्र करा.
\frac{1}{3}rt
0 मिळविण्यासाठी -\frac{1}{16}s^{2} आणि \frac{1}{16}s^{2} एकत्र करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}