मुख्य सामग्री वगळा
x साठी सोडवा (जटिल उत्तर)
Tick mark Image
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x^{3}+3x=4
दोन्ही बाजूंना 3x जोडा.
x^{3}+3x-4=0
दोन्ही बाजूंकडून 4 वजा करा.
±4,±2,±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म -4 ला विभाजित करते आणि q अग्रगण्य गुणांक 1 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=1
तंतोतंत मूल्‍यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्‍ये वापरण्‍याचा प्रयत्‍न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्‍यास, अंश वापरून पाहा.
x^{2}+x+4=0
फॅक्‍टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. x^{2}+x+4 मिळविण्यासाठी x^{3}+3x-4 ला x-1 ने भागाकार करा. निकाल 0 समान असताना समीकरण सोडवा.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
फॉर्म ax^{2}+bx+c=0 ची समीकरणे वर्गसमीकरण सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडवली जाऊ शकतात. वर्गसमीकरण सुत्रामध्ये a साठी 1, b साठी 1 आणि c साठी 4 विकल्प आहे.
x=\frac{-1±\sqrt{-15}}{2}
गणना करा.
x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
जेव्हा ± धन असते तेव्हा आणि ± ऋण असते तेव्हा x^{2}+x+4=0 समीकरण सोडवा.
x=1 x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
आढळलेले सर्व सोल्‍यूशन सूचीबद्ध करा.
x^{3}+3x=4
दोन्ही बाजूंना 3x जोडा.
x^{3}+3x-4=0
दोन्ही बाजूंकडून 4 वजा करा.
±4,±2,±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म -4 ला विभाजित करते आणि q अग्रगण्य गुणांक 1 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=1
तंतोतंत मूल्‍यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्‍ये वापरण्‍याचा प्रयत्‍न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्‍यास, अंश वापरून पाहा.
x^{2}+x+4=0
फॅक्‍टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. x^{2}+x+4 मिळविण्यासाठी x^{3}+3x-4 ला x-1 ने भागाकार करा. निकाल 0 समान असताना समीकरण सोडवा.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
फॉर्म ax^{2}+bx+c=0 ची समीकरणे वर्गसमीकरण सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडवली जाऊ शकतात. वर्गसमीकरण सुत्रामध्ये a साठी 1, b साठी 1 आणि c साठी 4 विकल्प आहे.
x=\frac{-1±\sqrt{-15}}{2}
गणना करा.
x\in \emptyset
एका ऋण संख्येचे वर्गमूळ वास्तविक क्षेत्रामध्ये परिभाषित केले नसल्यामुळे, कोणतेही निरसन नाहीत.
x=1
आढळलेले सर्व सोल्‍यूशन सूचीबद्ध करा.