x साठी सोडवा
x=5\sqrt{17}+5\approx 25.615528128
x=5-5\sqrt{17}\approx -15.615528128
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x^{2}-10x-400=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-400\right)}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -10 आणि c साठी -400 विकल्प म्हणून ठेवा.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-400\right)}}{2}
वर्ग -10.
x=\frac{-\left(-10\right)±\sqrt{100+1600}}{2}
-400 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-10\right)±\sqrt{1700}}{2}
100 ते 1600 जोडा.
x=\frac{-\left(-10\right)±10\sqrt{17}}{2}
1700 चा वर्गमूळ घ्या.
x=\frac{10±10\sqrt{17}}{2}
-10 ची विरूद्ध संख्या 10 आहे.
x=\frac{10\sqrt{17}+10}{2}
आता ± धन असताना समीकरण x=\frac{10±10\sqrt{17}}{2} सोडवा. 10 ते 10\sqrt{17} जोडा.
x=5\sqrt{17}+5
10+10\sqrt{17} ला 2 ने भागा.
x=\frac{10-10\sqrt{17}}{2}
आता ± ऋण असताना समीकरण x=\frac{10±10\sqrt{17}}{2} सोडवा. 10 मधून 10\sqrt{17} वजा करा.
x=5-5\sqrt{17}
10-10\sqrt{17} ला 2 ने भागा.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
समीकरण आता सोडवली आहे.
x^{2}-10x-400=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
x^{2}-10x-400-\left(-400\right)=-\left(-400\right)
समीकरणाच्या दोन्ही बाजूस 400 जोडा.
x^{2}-10x=-\left(-400\right)
-400 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
x^{2}-10x=400
0 मधून -400 वजा करा.
x^{2}-10x+\left(-5\right)^{2}=400+\left(-5\right)^{2}
-10 चा भागाकार करा, x टर्म चा गुणांक, -5 मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -5 चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-10x+25=400+25
वर्ग -5.
x^{2}-10x+25=425
400 ते 25 जोडा.
\left(x-5\right)^{2}=425
घटक x^{2}-10x+25. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-5\right)^{2}}=\sqrt{425}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-5=5\sqrt{17} x-5=-5\sqrt{17}
सरलीकृत करा.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
समीकरणाच्या दोन्ही बाजूस 5 जोडा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}