x साठी सोडवा
x=3
x=7
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-10 ab=21
समीकरण सोडवण्यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-10x+21 घटक. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,-21 -3,-7
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b नकारात्मक असल्याने, a व b दोन्ही नकारात्मक आहेत. 21 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-21=-22 -3-7=-10
प्रत्येक पेअरची बेरीज करा.
a=-7 b=-3
बेरी -10 येत असलेल्या पेअरचे निरसन.
\left(x-7\right)\left(x-3\right)
मिळविलेले मूल्य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
x=7 x=3
समीकरण निरसन शोधण्यासाठी, x-7=0 आणि x-3=0 सोडवा.
a+b=-10 ab=1\times 21=21
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू x^{2}+ax+bx+21 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
-1,-21 -3,-7
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b नकारात्मक असल्याने, a व b दोन्ही नकारात्मक आहेत. 21 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
-1-21=-22 -3-7=-10
प्रत्येक पेअरची बेरीज करा.
a=-7 b=-3
बेरी -10 येत असलेल्या पेअरचे निरसन.
\left(x^{2}-7x\right)+\left(-3x+21\right)
\left(x^{2}-7x\right)+\left(-3x+21\right) प्रमाणे x^{2}-10x+21 पुन्हा लिहा.
x\left(x-7\right)-3\left(x-7\right)
पहिल्या आणि -3 मध्ये अन्य समूहात x घटक काढा.
\left(x-7\right)\left(x-3\right)
वितरण गुणधर्माचा वापर करून x-7 सामान्य पदाचे घटक काढा.
x=7 x=3
समीकरण निरसन शोधण्यासाठी, x-7=0 आणि x-3=0 सोडवा.
x^{2}-10x+21=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 21}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -10 आणि c साठी 21 विकल्प म्हणून ठेवा.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 21}}{2}
वर्ग -10.
x=\frac{-\left(-10\right)±\sqrt{100-84}}{2}
21 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-10\right)±\sqrt{16}}{2}
100 ते -84 जोडा.
x=\frac{-\left(-10\right)±4}{2}
16 चा वर्गमूळ घ्या.
x=\frac{10±4}{2}
-10 ची विरूद्ध संख्या 10 आहे.
x=\frac{14}{2}
आता ± धन असताना समीकरण x=\frac{10±4}{2} सोडवा. 10 ते 4 जोडा.
x=7
14 ला 2 ने भागा.
x=\frac{6}{2}
आता ± ऋण असताना समीकरण x=\frac{10±4}{2} सोडवा. 10 मधून 4 वजा करा.
x=3
6 ला 2 ने भागा.
x=7 x=3
समीकरण आता सोडवली आहे.
x^{2}-10x+21=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
x^{2}-10x+21-21=-21
समीकरणाच्या दोन्ही बाजूंमधून 21 वजा करा.
x^{2}-10x=-21
21 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
x^{2}-10x+\left(-5\right)^{2}=-21+\left(-5\right)^{2}
-10 चा भागाकार करा, x टर्म चा गुणांक, -5 मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -5 चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-10x+25=-21+25
वर्ग -5.
x^{2}-10x+25=4
-21 ते 25 जोडा.
\left(x-5\right)^{2}=4
घटक x^{2}-10x+25. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-5\right)^{2}}=\sqrt{4}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-5=2 x-5=-2
सरलीकृत करा.
x=7 x=3
समीकरणाच्या दोन्ही बाजूस 5 जोडा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}