मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

-5x+y=-11,4x-6y=14
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
-5x+y=-11
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
-5x=-y-11
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=-\frac{1}{5}\left(-y-11\right)
दोन्ही बाजूंना -5 ने विभागा.
x=\frac{1}{5}y+\frac{11}{5}
-y-11 ला -\frac{1}{5} वेळा गुणाकार करा.
4\left(\frac{1}{5}y+\frac{11}{5}\right)-6y=14
इतर समीकरणामध्ये x साठी \frac{11+y}{5} चा विकल्प वापरा, 4x-6y=14.
\frac{4}{5}y+\frac{44}{5}-6y=14
\frac{11+y}{5} ला 4 वेळा गुणाकार करा.
-\frac{26}{5}y+\frac{44}{5}=14
\frac{4y}{5} ते -6y जोडा.
-\frac{26}{5}y=\frac{26}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{44}{5} वजा करा.
y=-1
समीकरणाच्या दोन्ही बाजूंना -\frac{26}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{5}\left(-1\right)+\frac{11}{5}
x=\frac{1}{5}y+\frac{11}{5} मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-1+11}{5}
-1 ला \frac{1}{5} वेळा गुणाकार करा.
x=2
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{11}{5} ते -\frac{1}{5} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=2,y=-1
सिस्टम आता सोडवली आहे.
-5x+y=-11,4x-6y=14
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\14\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
समीकरणाला \left(\begin{matrix}-5&1\\4&-6\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-5\left(-6\right)-4}&-\frac{1}{-5\left(-6\right)-4}\\-\frac{4}{-5\left(-6\right)-4}&-\frac{5}{-5\left(-6\right)-4}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}&-\frac{1}{26}\\-\frac{2}{13}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-11\right)-\frac{1}{26}\times 14\\-\frac{2}{13}\left(-11\right)-\frac{5}{26}\times 14\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
अंकगणित करा.
x=2,y=-1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
-5x+y=-11,4x-6y=14
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
4\left(-5\right)x+4y=4\left(-11\right),-5\times 4x-5\left(-6\right)y=-5\times 14
-5x आणि 4x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -5 ने गुणाकार करा.
-20x+4y=-44,-20x+30y=-70
सरलीकृत करा.
-20x+20x+4y-30y=-44+70
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -20x+4y=-44 मधून -20x+30y=-70 वजा करा.
4y-30y=-44+70
-20x ते 20x जोडा. -20x आणि 20x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-26y=-44+70
4y ते -30y जोडा.
-26y=26
-44 ते 70 जोडा.
y=-1
दोन्ही बाजूंना -26 ने विभागा.
4x-6\left(-1\right)=14
4x-6y=14 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
4x+6=14
-1 ला -6 वेळा गुणाकार करा.
4x=8
समीकरणाच्या दोन्ही बाजूंमधून 6 वजा करा.
x=2
दोन्ही बाजूंना 4 ने विभागा.
x=2,y=-1
सिस्टम आता सोडवली आहे.