x, y साठी सोडवा
x=4
y=9
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x+4y=40,-x+8y=68
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+4y=40
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-4y+40
समीकरणाच्या दोन्ही बाजूंमधून 4y वजा करा.
-\left(-4y+40\right)+8y=68
इतर समीकरणामध्ये x साठी -4y+40 चा विकल्प वापरा, -x+8y=68.
4y-40+8y=68
-4y+40 ला -1 वेळा गुणाकार करा.
12y-40=68
4y ते 8y जोडा.
12y=108
समीकरणाच्या दोन्ही बाजूस 40 जोडा.
y=9
दोन्ही बाजूंना 12 ने विभागा.
x=-4\times 9+40
x=-4y+40 मध्ये y साठी 9 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-36+40
9 ला -4 वेळा गुणाकार करा.
x=4
40 ते -36 जोडा.
x=4,y=9
सिस्टम आता सोडवली आहे.
x+4y=40,-x+8y=68
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\68\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&4\\-1&8\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-4\left(-1\right)}&-\frac{4}{8-4\left(-1\right)}\\-\frac{-1}{8-4\left(-1\right)}&\frac{1}{8-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 40-\frac{1}{3}\times 68\\\frac{1}{12}\times 40+\frac{1}{12}\times 68\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\9\end{matrix}\right)
अंकगणित करा.
x=4,y=9
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+4y=40,-x+8y=68
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-x-4y=-40,-x+8y=68
x आणि -x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
-x+x-4y-8y=-40-68
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -x-4y=-40 मधून -x+8y=68 वजा करा.
-4y-8y=-40-68
-x ते x जोडा. -x आणि x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-12y=-40-68
-4y ते -8y जोडा.
-12y=-108
-40 ते -68 जोडा.
y=9
दोन्ही बाजूंना -12 ने विभागा.
-x+8\times 9=68
-x+8y=68 मध्ये y साठी 9 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-x+72=68
9 ला 8 वेळा गुणाकार करा.
-x=-4
समीकरणाच्या दोन्ही बाजूंमधून 72 वजा करा.
x=4
दोन्ही बाजूंना -1 ने विभागा.
x=4,y=9
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}