y, x साठी सोडवा
x=4
y=8
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
5y+x=44,y-x=4
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
5y+x=44
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
5y=-x+44
समीकरणाच्या दोन्ही बाजूंमधून x वजा करा.
y=\frac{1}{5}\left(-x+44\right)
दोन्ही बाजूंना 5 ने विभागा.
y=-\frac{1}{5}x+\frac{44}{5}
-x+44 ला \frac{1}{5} वेळा गुणाकार करा.
-\frac{1}{5}x+\frac{44}{5}-x=4
इतर समीकरणामध्ये y साठी \frac{-x+44}{5} चा विकल्प वापरा, y-x=4.
-\frac{6}{5}x+\frac{44}{5}=4
-\frac{x}{5} ते -x जोडा.
-\frac{6}{5}x=-\frac{24}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{44}{5} वजा करा.
x=4
समीकरणाच्या दोन्ही बाजूंना -\frac{6}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
y=-\frac{1}{5}\times 4+\frac{44}{5}
y=-\frac{1}{5}x+\frac{44}{5} मध्ये x साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=\frac{-4+44}{5}
4 ला -\frac{1}{5} वेळा गुणाकार करा.
y=8
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{44}{5} ते -\frac{4}{5} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
y=8,x=4
सिस्टम आता सोडवली आहे.
5y+x=44,y-x=4
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}44\\4\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
समीकरणाला \left(\begin{matrix}5&1\\1&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-1}&-\frac{1}{5\left(-1\right)-1}\\-\frac{1}{5\left(-1\right)-1}&\frac{5}{5\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 44+\frac{1}{6}\times 4\\\frac{1}{6}\times 44-\frac{5}{6}\times 4\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
अंकगणित करा.
y=8,x=4
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
5y+x=44,y-x=4
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5y+x=44,5y+5\left(-1\right)x=5\times 4
5y आणि y समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने गुणाकार करा.
5y+x=44,5y-5x=20
सरलीकृत करा.
5y-5y+x+5x=44-20
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 5y+x=44 मधून 5y-5x=20 वजा करा.
x+5x=44-20
5y ते -5y जोडा. 5y आणि -5y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
6x=44-20
x ते 5x जोडा.
6x=24
44 ते -20 जोडा.
x=4
दोन्ही बाजूंना 6 ने विभागा.
y-4=4
y-x=4 मध्ये x साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=8
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
y=8,x=4
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}