मुख्य सामग्री वगळा
y, x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y+2x=2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
y+6-2x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
y-2x=-6
दोन्ही बाजूंकडून 6 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
y+2x=2,y-2x=-6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
y+2x=2
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
y=-2x+2
समीकरणाच्या दोन्ही बाजूंमधून 2x वजा करा.
-2x+2-2x=-6
इतर समीकरणामध्ये y साठी -2x+2 चा विकल्प वापरा, y-2x=-6.
-4x+2=-6
-2x ते -2x जोडा.
-4x=-8
समीकरणाच्या दोन्ही बाजूंमधून 2 वजा करा.
x=2
दोन्ही बाजूंना -4 ने विभागा.
y=-2\times 2+2
y=-2x+2 मध्ये x साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-4+2
2 ला -2 वेळा गुणाकार करा.
y=-2
2 ते -4 जोडा.
y=-2,x=2
सिस्टम आता सोडवली आहे.
y+2x=2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
y+6-2x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
y-2x=-6
दोन्ही बाजूंकडून 6 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
y+2x=2,y-2x=-6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\-6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}2\\-6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}2\\-6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\left(-6\right)\\\frac{1}{4}\times 2-\frac{1}{4}\left(-6\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
अंकगणित करा.
y=-2,x=2
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
y+2x=2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
y+6-2x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
y-2x=-6
दोन्ही बाजूंकडून 6 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
y+2x=2,y-2x=-6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
y-y+2x+2x=2+6
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून y+2x=2 मधून y-2x=-6 वजा करा.
2x+2x=2+6
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
4x=2+6
2x ते 2x जोडा.
4x=8
2 ते 6 जोडा.
x=2
दोन्ही बाजूंना 4 ने विभागा.
y-2\times 2=-6
y-2x=-6 मध्ये x साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y-4=-6
2 ला -2 वेळा गुणाकार करा.
y=-2
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
y=-2,x=2
सिस्टम आता सोडवली आहे.