मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y+3x=2
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
x-y=-6,3x+y=2
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-y=-6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=y-6
समीकरणाच्या दोन्ही बाजूस y जोडा.
3\left(y-6\right)+y=2
इतर समीकरणामध्ये x साठी y-6 चा विकल्प वापरा, 3x+y=2.
3y-18+y=2
y-6 ला 3 वेळा गुणाकार करा.
4y-18=2
3y ते y जोडा.
4y=20
समीकरणाच्या दोन्ही बाजूस 18 जोडा.
y=5
दोन्ही बाजूंना 4 ने विभागा.
x=5-6
x=y-6 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-1
-6 ते 5 जोडा.
x=-1,y=5
सिस्टम आता सोडवली आहे.
y+3x=2
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
x-y=-6,3x+y=2
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-1\\3&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)+\frac{1}{4}\times 2\\-\frac{3}{4}\left(-6\right)+\frac{1}{4}\times 2\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
अंकगणित करा.
x=-1,y=5
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
y+3x=2
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंना 3x जोडा.
x-y=-6,3x+y=2
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x+3\left(-1\right)y=3\left(-6\right),3x+y=2
x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
3x-3y=-18,3x+y=2
सरलीकृत करा.
3x-3x-3y-y=-18-2
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x-3y=-18 मधून 3x+y=2 वजा करा.
-3y-y=-18-2
3x ते -3x जोडा. 3x आणि -3x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-4y=-18-2
-3y ते -y जोडा.
-4y=-20
-18 ते -2 जोडा.
y=5
दोन्ही बाजूंना -4 ने विभागा.
3x+5=2
3x+y=2 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x=-3
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
x=-1
दोन्ही बाजूंना 3 ने विभागा.
x=-1,y=5
सिस्टम आता सोडवली आहे.