मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y-3x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 3x वजा करा.
x+y=8,-3x+y=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-y+8
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
-3\left(-y+8\right)+y=0
इतर समीकरणामध्ये x साठी -y+8 चा विकल्प वापरा, -3x+y=0.
3y-24+y=0
-y+8 ला -3 वेळा गुणाकार करा.
4y-24=0
3y ते y जोडा.
4y=24
समीकरणाच्या दोन्ही बाजूस 24 जोडा.
y=6
दोन्ही बाजूंना 4 ने विभागा.
x=-6+8
x=-y+8 मध्ये y साठी 6 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2
8 ते -6 जोडा.
x=2,y=6
सिस्टम आता सोडवली आहे.
y-3x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 3x वजा करा.
x+y=8,-3x+y=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&1\\-3&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हे उलटे मॅट्रिक्स आहे, ज्यामुळे मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार समस्या म्हणून पुन्हा लिहीली जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8\\\frac{3}{4}\times 8\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
अंकगणित करा.
x=2,y=6
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
y-3x=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 3x वजा करा.
x+y=8,-3x+y=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x+3x+y-y=8
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x+y=8 मधून -3x+y=0 वजा करा.
x+3x=8
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
4x=8
x ते 3x जोडा.
x=2
दोन्ही बाजूंना 4 ने विभागा.
-3\times 2+y=0
-3x+y=0 मध्ये x साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
-6+y=0
2 ला -3 वेळा गुणाकार करा.
y=6
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
x=2,y=6
सिस्टम आता सोडवली आहे.