मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+4y=2,-x-3y=3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+4y=2
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-4y+2
समीकरणाच्या दोन्ही बाजूंमधून 4y वजा करा.
-\left(-4y+2\right)-3y=3
इतर समीकरणामध्ये x साठी -4y+2 चा विकल्प वापरा, -x-3y=3.
4y-2-3y=3
-4y+2 ला -1 वेळा गुणाकार करा.
y-2=3
4y ते -3y जोडा.
y=5
समीकरणाच्या दोन्ही बाजूस 2 जोडा.
x=-4\times 5+2
x=-4y+2 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-20+2
5 ला -4 वेळा गुणाकार करा.
x=-18
2 ते -20 जोडा.
x=-18,y=5
सिस्टम आता सोडवली आहे.
x+4y=2,-x-3y=3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&4\\-1&-3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-4\left(-1\right)}&-\frac{4}{-3-4\left(-1\right)}\\-\frac{-1}{-3-4\left(-1\right)}&\frac{1}{-3-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 2-4\times 3\\2+3\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\5\end{matrix}\right)
अंकगणित करा.
x=-18,y=5
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+4y=2,-x-3y=3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-x-4y=-2,-x-3y=3
x आणि -x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
-x+x-4y+3y=-2-3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -x-4y=-2 मधून -x-3y=3 वजा करा.
-4y+3y=-2-3
-x ते x जोडा. -x आणि x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-y=-2-3
-4y ते 3y जोडा.
-y=-5
-2 ते -3 जोडा.
y=5
दोन्ही बाजूंना -1 ने विभागा.
-x-3\times 5=3
-x-3y=3 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-x-15=3
5 ला -3 वेळा गुणाकार करा.
-x=18
समीकरणाच्या दोन्ही बाजूस 15 जोडा.
x=-18
दोन्ही बाजूंना -1 ने विभागा.
x=-18,y=5
सिस्टम आता सोडवली आहे.