मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+2y=8,x-3y=9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+2y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-2y+8
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
-2y+8-3y=9
इतर समीकरणामध्ये x साठी -2y+8 चा विकल्प वापरा, x-3y=9.
-5y+8=9
-2y ते -3y जोडा.
-5y=1
समीकरणाच्या दोन्ही बाजूंमधून 8 वजा करा.
y=-\frac{1}{5}
दोन्ही बाजूंना -5 ने विभागा.
x=-2\left(-\frac{1}{5}\right)+8
x=-2y+8 मध्ये y साठी -\frac{1}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{2}{5}+8
-\frac{1}{5} ला -2 वेळा गुणाकार करा.
x=\frac{42}{5}
8 ते \frac{2}{5} जोडा.
x=\frac{42}{5},y=-\frac{1}{5}
सिस्टम आता सोडवली आहे.
x+2y=8,x-3y=9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\1&-3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8+\frac{2}{5}\times 9\\\frac{1}{5}\times 8-\frac{1}{5}\times 9\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{42}{5}\\-\frac{1}{5}\end{matrix}\right)
अंकगणित करा.
x=\frac{42}{5},y=-\frac{1}{5}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+2y=8,x-3y=9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x-x+2y+3y=8-9
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x+2y=8 मधून x-3y=9 वजा करा.
2y+3y=8-9
x ते -x जोडा. x आणि -x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
5y=8-9
2y ते 3y जोडा.
5y=-1
8 ते -9 जोडा.
y=-\frac{1}{5}
दोन्ही बाजूंना 5 ने विभागा.
x-3\left(-\frac{1}{5}\right)=9
x-3y=9 मध्ये y साठी -\frac{1}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+\frac{3}{5}=9
-\frac{1}{5} ला -3 वेळा गुणाकार करा.
x=\frac{42}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{3}{5} वजा करा.
x=\frac{42}{5},y=-\frac{1}{5}
सिस्टम आता सोडवली आहे.