मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+2y=10,2x+3y=17
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+2y=10
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-2y+10
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
2\left(-2y+10\right)+3y=17
इतर समीकरणामध्ये x साठी -2y+10 चा विकल्प वापरा, 2x+3y=17.
-4y+20+3y=17
-2y+10 ला 2 वेळा गुणाकार करा.
-y+20=17
-4y ते 3y जोडा.
-y=-3
समीकरणाच्या दोन्ही बाजूंमधून 20 वजा करा.
y=3
दोन्ही बाजूंना -1 ने विभागा.
x=-2\times 3+10
x=-2y+10 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-6+10
3 ला -2 वेळा गुणाकार करा.
x=4
10 ते -6 जोडा.
x=4,y=3
सिस्टम आता सोडवली आहे.
x+2y=10,2x+3y=17
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\17\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\2&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}10\\17\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}10\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}10\\17\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 10+2\times 17\\2\times 10-17\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
अंकगणित करा.
x=4,y=3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+2y=10,2x+3y=17
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x+2\times 2y=2\times 10,2x+3y=17
x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
2x+4y=20,2x+3y=17
सरलीकृत करा.
2x-2x+4y-3y=20-17
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+4y=20 मधून 2x+3y=17 वजा करा.
4y-3y=20-17
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
y=20-17
4y ते -3y जोडा.
y=3
20 ते -17 जोडा.
2x+3\times 3=17
2x+3y=17 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x+9=17
3 ला 3 वेळा गुणाकार करा.
2x=8
समीकरणाच्या दोन्ही बाजूंमधून 9 वजा करा.
x=4
दोन्ही बाजूंना 2 ने विभागा.
x=4,y=3
सिस्टम आता सोडवली आहे.