p, b साठी सोडवा
p=55
b=75
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
p+b=130,p+1.09b=136.75
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
p+b=130
समान चिन्हाच्या डाव्या बाजूला p विलग करून, p साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
p=-b+130
समीकरणाच्या दोन्ही बाजूंमधून b वजा करा.
-b+130+1.09b=136.75
इतर समीकरणामध्ये p साठी -b+130 चा विकल्प वापरा, p+1.09b=136.75.
0.09b+130=136.75
-b ते \frac{109b}{100} जोडा.
0.09b=6.75
समीकरणाच्या दोन्ही बाजूंमधून 130 वजा करा.
b=75
समीकरणाच्या दोन्ही बाजूंना 0.09 ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
p=-75+130
p=-b+130 मध्ये b साठी 75 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण p साठी थेट सोडवू शकता.
p=55
130 ते -75 जोडा.
p=55,b=75
सिस्टम आता सोडवली आहे.
p+b=130,p+1.09b=136.75
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}130\\136.75\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&1\\1&1.09\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}p\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&1.09\end{matrix}\right))\left(\begin{matrix}130\\136.75\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1.09}{1.09-1}&-\frac{1}{1.09-1}\\-\frac{1}{1.09-1}&\frac{1}{1.09-1}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}&-\frac{100}{9}\\-\frac{100}{9}&\frac{100}{9}\end{matrix}\right)\left(\begin{matrix}130\\136.75\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}\frac{109}{9}\times 130-\frac{100}{9}\times 136.75\\-\frac{100}{9}\times 130+\frac{100}{9}\times 136.75\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}p\\b\end{matrix}\right)=\left(\begin{matrix}55\\75\end{matrix}\right)
अंकगणित करा.
p=55,b=75
मॅट्रिक्सचे p आणि b घटक बाहेर काढा.
p+b=130,p+1.09b=136.75
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
p-p+b-1.09b=130-136.75
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून p+b=130 मधून p+1.09b=136.75 वजा करा.
b-1.09b=130-136.75
p ते -p जोडा. p आणि -p रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-0.09b=130-136.75
b ते -\frac{109b}{100} जोडा.
-0.09b=-6.75
130 ते -136.75 जोडा.
b=75
समीकरणाच्या दोन्ही बाजूंना -0.09 ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
p+1.09\times 75=136.75
p+1.09b=136.75 मध्ये b साठी 75 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण p साठी थेट सोडवू शकता.
p+81.75=136.75
75 ला 1.09 वेळा गुणाकार करा.
p=55
समीकरणाच्या दोन्ही बाजूंमधून 81.75 वजा करा.
p=55,b=75
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}