मुख्य सामग्री वगळा
a, b साठी सोडवा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

a+2b=5,a-2b=-3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
a+2b=5
समान चिन्हाच्या डाव्या बाजूला a विलग करून, a साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
a=-2b+5
समीकरणाच्या दोन्ही बाजूंमधून 2b वजा करा.
-2b+5-2b=-3
इतर समीकरणामध्ये a साठी -2b+5 चा विकल्प वापरा, a-2b=-3.
-4b+5=-3
-2b ते -2b जोडा.
-4b=-8
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
b=2
दोन्ही बाजूंना -4 ने विभागा.
a=-2\times 2+5
a=-2b+5 मध्ये b साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण a साठी थेट सोडवू शकता.
a=-4+5
2 ला -2 वेळा गुणाकार करा.
a=1
5 ते -4 जोडा.
a=1,b=2
सिस्टम आता सोडवली आहे.
a+2b=5,a-2b=-3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5+\frac{1}{2}\left(-3\right)\\\frac{1}{4}\times 5-\frac{1}{4}\left(-3\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणित करा.
a=1,b=2
मॅट्रिक्सचे a आणि b घटक बाहेर काढा.
a+2b=5,a-2b=-3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
a-a+2b+2b=5+3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून a+2b=5 मधून a-2b=-3 वजा करा.
2b+2b=5+3
a ते -a जोडा. a आणि -a रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
4b=5+3
2b ते 2b जोडा.
4b=8
5 ते 3 जोडा.
b=2
दोन्ही बाजूंना 4 ने विभागा.
a-2\times 2=-3
a-2b=-3 मध्ये b साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण a साठी थेट सोडवू शकता.
a-4=-3
2 ला -2 वेळा गुणाकार करा.
a=1
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
a=1,b=2
सिस्टम आता सोडवली आहे.