x साठी सोडवा
x=6
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
शून्याने भागाकार करणे परिभाषित केले नसल्याने चल x हे -2,2 च्या कोणत्याही मूल्यांच्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंचा \left(x-2\right)\left(x+2\right) ने गुणाकार करा, x+2,x-2 चा लघुत्तम साधारण विभाजक.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ला x-2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ला 16 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{7}{x-2} एकल अपूर्णांक म्हणून एक्सप्रेस करा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ला 8x^{2}-25 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{7x-14}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x-2 ला 7 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{7x-14}{x-2}\times 8 एकल अपूर्णांक म्हणून एक्सप्रेस करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 8x^{3}-32x+16x^{2}-64 वेळा गुणाकार करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} आणि \frac{\left(7x-14\right)\times 8}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8 मध्ये गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112 मधील टर्मप्रमाणे एकत्रित करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}-8x^{3}=-25x+16x^{2}-50
दोन्ही बाजूंकडून 8x^{3} वजा करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -8x^{3} वेळा गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
\frac{8x^{4}-64x^{2}+56x+16}{x-2} आणि \frac{-8x^{3}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+25x=16x^{2}-50
दोन्ही बाजूंना 25x जोडा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 25x वेळा गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
\frac{-64x^{2}+56x+16+16x^{3}}{x-2} आणि \frac{25x\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-64x^{2}+56x+16+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right) मध्ये गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x^{2}-50x मधील टर्मप्रमाणे एकत्रित करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}-16x^{2}=-50
दोन्ही बाजूंकडून 16x^{2} वजा करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -16x^{2} वेळा गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
\frac{-39x^{2}+6x+16+16x^{3}}{x-2} आणि \frac{-16x^{2}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-7x^{2}+6x+16}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-7x^{2}+6x+16}{x-2}+50=0
दोन्ही बाजूंना 50 जोडा.
\frac{-7x^{2}+6x+16}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 50 वेळा गुणाकार करा.
\frac{-7x^{2}+6x+16+50\left(x-2\right)}{x-2}=0
\frac{-7x^{2}+6x+16}{x-2} आणि \frac{50\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-7x^{2}+6x+16+50x-100}{x-2}=0
-7x^{2}+6x+16+50\left(x-2\right) मध्ये गुणाकार करा.
\frac{-7x^{2}+56x-84}{x-2}=0
-7x^{2}+6x+16+50x-100 मधील टर्मप्रमाणे एकत्रित करा.
-7x^{2}+56x-84=0
शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 2 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x-2 ने गुणाकार करा.
-x^{2}+8x-12=0
दोन्ही बाजूंना 7 ने विभागा.
a+b=8 ab=-\left(-12\right)=12
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू -x^{2}+ax+bx-12 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,12 2,6 3,4
ab सकारात्मक असल्यापासून a व b मध्ये समान चिन्ह आहे. a+b सकारात्मक असल्याने, a व b दोन्ही सकारात्मक आहेत. 12 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1+12=13 2+6=8 3+4=7
प्रत्येक पेअरची बेरीज करा.
a=6 b=2
बेरी 8 येत असलेल्या पेअरचे निरसन.
\left(-x^{2}+6x\right)+\left(2x-12\right)
\left(-x^{2}+6x\right)+\left(2x-12\right) प्रमाणे -x^{2}+8x-12 पुन्हा लिहा.
-x\left(x-6\right)+2\left(x-6\right)
पहिल्या आणि 2 मध्ये अन्य समूहात -x घटक काढा.
\left(x-6\right)\left(-x+2\right)
वितरण गुणधर्माचा वापर करून x-6 सामान्य पदाचे घटक काढा.
x=6 x=2
समीकरण निरसन शोधण्यासाठी, x-6=0 आणि -x+2=0 सोडवा.
x=6
चल x हे 2 च्यास मान असता कामा नये.
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
शून्याने भागाकार करणे परिभाषित केले नसल्याने चल x हे -2,2 च्या कोणत्याही मूल्यांच्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंचा \left(x-2\right)\left(x+2\right) ने गुणाकार करा, x+2,x-2 चा लघुत्तम साधारण विभाजक.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ला x-2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ला 16 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{7}{x-2} एकल अपूर्णांक म्हणून एक्सप्रेस करा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ला 8x^{2}-25 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{7x-14}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x-2 ला 7 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{7x-14}{x-2}\times 8 एकल अपूर्णांक म्हणून एक्सप्रेस करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 8x^{3}-32x+16x^{2}-64 वेळा गुणाकार करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} आणि \frac{\left(7x-14\right)\times 8}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8 मध्ये गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112 मधील टर्मप्रमाणे एकत्रित करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}-8x^{3}=-25x+16x^{2}-50
दोन्ही बाजूंकडून 8x^{3} वजा करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -8x^{3} वेळा गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
\frac{8x^{4}-64x^{2}+56x+16}{x-2} आणि \frac{-8x^{3}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+25x=16x^{2}-50
दोन्ही बाजूंना 25x जोडा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 25x वेळा गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
\frac{-64x^{2}+56x+16+16x^{3}}{x-2} आणि \frac{25x\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-64x^{2}+56x+16+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right) मध्ये गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x^{2}-50x मधील टर्मप्रमाणे एकत्रित करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}-16x^{2}=-50
दोन्ही बाजूंकडून 16x^{2} वजा करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -16x^{2} वेळा गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
\frac{-39x^{2}+6x+16+16x^{3}}{x-2} आणि \frac{-16x^{2}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-7x^{2}+6x+16}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-7x^{2}+6x+16}{x-2}+50=0
दोन्ही बाजूंना 50 जोडा.
\frac{-7x^{2}+6x+16}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 50 वेळा गुणाकार करा.
\frac{-7x^{2}+6x+16+50\left(x-2\right)}{x-2}=0
\frac{-7x^{2}+6x+16}{x-2} आणि \frac{50\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-7x^{2}+6x+16+50x-100}{x-2}=0
-7x^{2}+6x+16+50\left(x-2\right) मध्ये गुणाकार करा.
\frac{-7x^{2}+56x-84}{x-2}=0
-7x^{2}+6x+16+50x-100 मधील टर्मप्रमाणे एकत्रित करा.
-7x^{2}+56x-84=0
शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 2 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x-2 ने गुणाकार करा.
x=\frac{-56±\sqrt{56^{2}-4\left(-7\right)\left(-84\right)}}{2\left(-7\right)}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी -7, b साठी 56 आणि c साठी -84 विकल्प म्हणून ठेवा.
x=\frac{-56±\sqrt{3136-4\left(-7\right)\left(-84\right)}}{2\left(-7\right)}
वर्ग 56.
x=\frac{-56±\sqrt{3136+28\left(-84\right)}}{2\left(-7\right)}
-7 ला -4 वेळा गुणाकार करा.
x=\frac{-56±\sqrt{3136-2352}}{2\left(-7\right)}
-84 ला 28 वेळा गुणाकार करा.
x=\frac{-56±\sqrt{784}}{2\left(-7\right)}
3136 ते -2352 जोडा.
x=\frac{-56±28}{2\left(-7\right)}
784 चा वर्गमूळ घ्या.
x=\frac{-56±28}{-14}
-7 ला 2 वेळा गुणाकार करा.
x=-\frac{28}{-14}
आता ± धन असताना समीकरण x=\frac{-56±28}{-14} सोडवा. -56 ते 28 जोडा.
x=2
-28 ला -14 ने भागा.
x=-\frac{84}{-14}
आता ± ऋण असताना समीकरण x=\frac{-56±28}{-14} सोडवा. -56 मधून 28 वजा करा.
x=6
-84 ला -14 ने भागा.
x=2 x=6
समीकरण आता सोडवली आहे.
x=6
चल x हे 2 च्यास मान असता कामा नये.
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
शून्याने भागाकार करणे परिभाषित केले नसल्याने चल x हे -2,2 च्या कोणत्याही मूल्यांच्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंचा \left(x-2\right)\left(x+2\right) ने गुणाकार करा, x+2,x-2 चा लघुत्तम साधारण विभाजक.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ला x-2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ला x+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{7}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ला 16 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{7}{x-2} एकल अपूर्णांक म्हणून एक्सप्रेस करा.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 7}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ला 8x^{2}-25 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{7x-14}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x-2 ला 7 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
8x^{3}-32x+16x^{2}-64+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{7x-14}{x-2}\times 8 एकल अपूर्णांक म्हणून एक्सप्रेस करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 8x^{3}-32x+16x^{2}-64 वेळा गुणाकार करा.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} आणि \frac{\left(7x-14\right)\times 8}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(7x-14\right)\times 8 मध्ये गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+56x-112 मधील टर्मप्रमाणे एकत्रित करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}-8x^{3}=-25x+16x^{2}-50
दोन्ही बाजूंकडून 8x^{3} वजा करा.
\frac{8x^{4}-64x^{2}+56x+16}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -8x^{3} वेळा गुणाकार करा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
\frac{8x^{4}-64x^{2}+56x+16}{x-2} आणि \frac{-8x^{3}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{3}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+56x+16-8x^{4}+16x^{3} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+25x=16x^{2}-50
दोन्ही बाजूंना 25x जोडा.
\frac{-64x^{2}+56x+16+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला 25x वेळा गुणाकार करा.
\frac{-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
\frac{-64x^{2}+56x+16+16x^{3}}{x-2} आणि \frac{25x\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-64x^{2}+56x+16+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x\left(x-2\right) मध्ये गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+56x+16+16x^{3}+25x^{2}-50x मधील टर्मप्रमाणे एकत्रित करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}-16x^{2}=-50
दोन्ही बाजूंकडून 16x^{2} वजा करा.
\frac{-39x^{2}+6x+16+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{x-2}{x-2} ला -16x^{2} वेळा गुणाकार करा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
\frac{-39x^{2}+6x+16+16x^{3}}{x-2} आणि \frac{-16x^{2}\left(x-2\right)}{x-2} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{2}\left(x-2\right) मध्ये गुणाकार करा.
\frac{-7x^{2}+6x+16}{x-2}=-50
-39x^{2}+6x+16+16x^{3}-16x^{3}+32x^{2} मधील टर्मप्रमाणे एकत्रित करा.
-7x^{2}+6x+16=-50\left(x-2\right)
शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 2 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x-2 ने गुणाकार करा.
-7x^{2}+6x+16=-50x+100
-50 ला x-2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-7x^{2}+6x+16+50x=100
दोन्ही बाजूंना 50x जोडा.
-7x^{2}+56x+16=100
56x मिळविण्यासाठी 6x आणि 50x एकत्र करा.
-7x^{2}+56x=100-16
दोन्ही बाजूंकडून 16 वजा करा.
-7x^{2}+56x=84
84 मिळविण्यासाठी 100 मधून 16 वजा करा.
\frac{-7x^{2}+56x}{-7}=\frac{84}{-7}
दोन्ही बाजूंना -7 ने विभागा.
x^{2}+\frac{56}{-7}x=\frac{84}{-7}
-7 ने केलेला भागाकार -7 ने केलेला गुणाकार पूर्ववत करतो.
x^{2}-8x=\frac{84}{-7}
56 ला -7 ने भागा.
x^{2}-8x=-12
84 ला -7 ने भागा.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
-8 चा भागाकार करा, x टर्म चा गुणांक, -4 मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -4 चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-8x+16=-12+16
वर्ग -4.
x^{2}-8x+16=4
-12 ते 16 जोडा.
\left(x-4\right)^{2}=4
घटक x^{2}-8x+16. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-4=2 x-4=-2
सरलीकृत करा.
x=6 x=2
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=6
चल x हे 2 च्यास मान असता कामा नये.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}