x, y साठी सोडवा
x=5
y=2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
5x-8y=9,2x+y=12
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
5x-8y=9
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
5x=8y+9
समीकरणाच्या दोन्ही बाजूस 8y जोडा.
x=\frac{1}{5}\left(8y+9\right)
दोन्ही बाजूंना 5 ने विभागा.
x=\frac{8}{5}y+\frac{9}{5}
8y+9 ला \frac{1}{5} वेळा गुणाकार करा.
2\left(\frac{8}{5}y+\frac{9}{5}\right)+y=12
इतर समीकरणामध्ये x साठी \frac{8y+9}{5} चा विकल्प वापरा, 2x+y=12.
\frac{16}{5}y+\frac{18}{5}+y=12
\frac{8y+9}{5} ला 2 वेळा गुणाकार करा.
\frac{21}{5}y+\frac{18}{5}=12
\frac{16y}{5} ते y जोडा.
\frac{21}{5}y=\frac{42}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{18}{5} वजा करा.
y=2
समीकरणाच्या दोन्ही बाजूंना \frac{21}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{8}{5}\times 2+\frac{9}{5}
x=\frac{8}{5}y+\frac{9}{5} मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{16+9}{5}
2 ला \frac{8}{5} वेळा गुणाकार करा.
x=5
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{9}{5} ते \frac{16}{5} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=5,y=2
सिस्टम आता सोडवली आहे.
5x-8y=9,2x+y=12
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}5&-8\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\12\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}5&-8\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
समीकरणाला \left(\begin{matrix}5&-8\\2&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-8\times 2\right)}&-\frac{-8}{5-\left(-8\times 2\right)}\\-\frac{2}{5-\left(-8\times 2\right)}&\frac{5}{5-\left(-8\times 2\right)}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}&\frac{8}{21}\\-\frac{2}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}\times 9+\frac{8}{21}\times 12\\-\frac{2}{21}\times 9+\frac{5}{21}\times 12\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
अंकगणित करा.
x=5,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
5x-8y=9,2x+y=12
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 5x+2\left(-8\right)y=2\times 9,5\times 2x+5y=5\times 12
5x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने गुणाकार करा.
10x-16y=18,10x+5y=60
सरलीकृत करा.
10x-10x-16y-5y=18-60
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 10x-16y=18 मधून 10x+5y=60 वजा करा.
-16y-5y=18-60
10x ते -10x जोडा. 10x आणि -10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-21y=18-60
-16y ते -5y जोडा.
-21y=-42
18 ते -60 जोडा.
y=2
दोन्ही बाजूंना -21 ने विभागा.
2x+2=12
2x+y=12 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x=10
समीकरणाच्या दोन्ही बाजूंमधून 2 वजा करा.
x=5
दोन्ही बाजूंना 2 ने विभागा.
x=5,y=2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}