x, y साठी सोडवा
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
y = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
5x-7y=4,-x+2y=-3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
5x-7y=4
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
5x=7y+4
समीकरणाच्या दोन्ही बाजूस 7y जोडा.
x=\frac{1}{5}\left(7y+4\right)
दोन्ही बाजूंना 5 ने विभागा.
x=\frac{7}{5}y+\frac{4}{5}
7y+4 ला \frac{1}{5} वेळा गुणाकार करा.
-\left(\frac{7}{5}y+\frac{4}{5}\right)+2y=-3
इतर समीकरणामध्ये x साठी \frac{7y+4}{5} चा विकल्प वापरा, -x+2y=-3.
-\frac{7}{5}y-\frac{4}{5}+2y=-3
\frac{7y+4}{5} ला -1 वेळा गुणाकार करा.
\frac{3}{5}y-\frac{4}{5}=-3
-\frac{7y}{5} ते 2y जोडा.
\frac{3}{5}y=-\frac{11}{5}
समीकरणाच्या दोन्ही बाजूस \frac{4}{5} जोडा.
y=-\frac{11}{3}
समीकरणाच्या दोन्ही बाजूंना \frac{3}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{7}{5}\left(-\frac{11}{3}\right)+\frac{4}{5}
x=\frac{7}{5}y+\frac{4}{5} मध्ये y साठी -\frac{11}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{77}{15}+\frac{4}{5}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{11}{3} चा \frac{7}{5} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-\frac{13}{3}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{4}{5} ते -\frac{77}{15} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-\frac{13}{3},y=-\frac{11}{3}
सिस्टम आता सोडवली आहे.
5x-7y=4,-x+2y=-3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}5&-7\\-1&2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-7\left(-1\right)\right)}&-\frac{-7}{5\times 2-\left(-7\left(-1\right)\right)}\\-\frac{-1}{5\times 2-\left(-7\left(-1\right)\right)}&\frac{5}{5\times 2-\left(-7\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{3}\\\frac{1}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 4+\frac{7}{3}\left(-3\right)\\\frac{1}{3}\times 4+\frac{5}{3}\left(-3\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{3}\\-\frac{11}{3}\end{matrix}\right)
अंकगणित करा.
x=-\frac{13}{3},y=-\frac{11}{3}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
5x-7y=4,-x+2y=-3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-5x-\left(-7y\right)=-4,5\left(-1\right)x+5\times 2y=5\left(-3\right)
5x आणि -x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने गुणाकार करा.
-5x+7y=-4,-5x+10y=-15
सरलीकृत करा.
-5x+5x+7y-10y=-4+15
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -5x+7y=-4 मधून -5x+10y=-15 वजा करा.
7y-10y=-4+15
-5x ते 5x जोडा. -5x आणि 5x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-3y=-4+15
7y ते -10y जोडा.
-3y=11
-4 ते 15 जोडा.
y=-\frac{11}{3}
दोन्ही बाजूंना -3 ने विभागा.
-x+2\left(-\frac{11}{3}\right)=-3
-x+2y=-3 मध्ये y साठी -\frac{11}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-x-\frac{22}{3}=-3
-\frac{11}{3} ला 2 वेळा गुणाकार करा.
-x=\frac{13}{3}
समीकरणाच्या दोन्ही बाजूस \frac{22}{3} जोडा.
x=-\frac{13}{3}
दोन्ही बाजूंना -1 ने विभागा.
x=-\frac{13}{3},y=-\frac{11}{3}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}