x, y साठी सोडवा
x=1
y=2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
5x-7y=-9,-2x-y=-4
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
5x-7y=-9
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
5x=7y-9
समीकरणाच्या दोन्ही बाजूस 7y जोडा.
x=\frac{1}{5}\left(7y-9\right)
दोन्ही बाजूंना 5 ने विभागा.
x=\frac{7}{5}y-\frac{9}{5}
7y-9 ला \frac{1}{5} वेळा गुणाकार करा.
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
इतर समीकरणामध्ये x साठी \frac{7y-9}{5} चा विकल्प वापरा, -2x-y=-4.
-\frac{14}{5}y+\frac{18}{5}-y=-4
\frac{7y-9}{5} ला -2 वेळा गुणाकार करा.
-\frac{19}{5}y+\frac{18}{5}=-4
-\frac{14y}{5} ते -y जोडा.
-\frac{19}{5}y=-\frac{38}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{18}{5} वजा करा.
y=2
समीकरणाच्या दोन्ही बाजूंना -\frac{19}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{7}{5}\times 2-\frac{9}{5}
x=\frac{7}{5}y-\frac{9}{5} मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{14-9}{5}
2 ला \frac{7}{5} वेळा गुणाकार करा.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{9}{5} ते \frac{14}{5} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=2
सिस्टम आता सोडवली आहे.
5x-7y=-9,-2x-y=-4
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
समीकरणाला \left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणित करा.
x=1,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
5x-7y=-9,-2x-y=-4
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
5x आणि -2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने गुणाकार करा.
-10x+14y=18,-10x-5y=-20
सरलीकृत करा.
-10x+10x+14y+5y=18+20
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -10x+14y=18 मधून -10x-5y=-20 वजा करा.
14y+5y=18+20
-10x ते 10x जोडा. -10x आणि 10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
19y=18+20
14y ते 5y जोडा.
19y=38
18 ते 20 जोडा.
y=2
दोन्ही बाजूंना 19 ने विभागा.
-2x-2=-4
-2x-y=-4 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-2x=-2
समीकरणाच्या दोन्ही बाजूस 2 जोडा.
x=1
दोन्ही बाजूंना -2 ने विभागा.
x=1,y=2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}