मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

5x+4y=8,2x-3y=17
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
5x+4y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
5x=-4y+8
समीकरणाच्या दोन्ही बाजूंमधून 4y वजा करा.
x=\frac{1}{5}\left(-4y+8\right)
दोन्ही बाजूंना 5 ने विभागा.
x=-\frac{4}{5}y+\frac{8}{5}
-4y+8 ला \frac{1}{5} वेळा गुणाकार करा.
2\left(-\frac{4}{5}y+\frac{8}{5}\right)-3y=17
इतर समीकरणामध्ये x साठी \frac{-4y+8}{5} चा विकल्प वापरा, 2x-3y=17.
-\frac{8}{5}y+\frac{16}{5}-3y=17
\frac{-4y+8}{5} ला 2 वेळा गुणाकार करा.
-\frac{23}{5}y+\frac{16}{5}=17
-\frac{8y}{5} ते -3y जोडा.
-\frac{23}{5}y=\frac{69}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{16}{5} वजा करा.
y=-3
समीकरणाच्या दोन्ही बाजूंना -\frac{23}{5} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{4}{5}\left(-3\right)+\frac{8}{5}
x=-\frac{4}{5}y+\frac{8}{5} मध्ये y साठी -3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{12+8}{5}
-3 ला -\frac{4}{5} वेळा गुणाकार करा.
x=4
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{8}{5} ते \frac{12}{5} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=4,y=-3
सिस्टम आता सोडवली आहे.
5x+4y=8,2x-3y=17
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}5&4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\17\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}5&4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
समीकरणाला \left(\begin{matrix}5&4\\2&-3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-4\times 2}&-\frac{4}{5\left(-3\right)-4\times 2}\\-\frac{2}{5\left(-3\right)-4\times 2}&\frac{5}{5\left(-3\right)-4\times 2}\end{matrix}\right)\left(\begin{matrix}8\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{23}&\frac{4}{23}\\\frac{2}{23}&-\frac{5}{23}\end{matrix}\right)\left(\begin{matrix}8\\17\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{23}\times 8+\frac{4}{23}\times 17\\\frac{2}{23}\times 8-\frac{5}{23}\times 17\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
अंकगणित करा.
x=4,y=-3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
5x+4y=8,2x-3y=17
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 5x+2\times 4y=2\times 8,5\times 2x+5\left(-3\right)y=5\times 17
5x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने गुणाकार करा.
10x+8y=16,10x-15y=85
सरलीकृत करा.
10x-10x+8y+15y=16-85
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 10x+8y=16 मधून 10x-15y=85 वजा करा.
8y+15y=16-85
10x ते -10x जोडा. 10x आणि -10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
23y=16-85
8y ते 15y जोडा.
23y=-69
16 ते -85 जोडा.
y=-3
दोन्ही बाजूंना 23 ने विभागा.
2x-3\left(-3\right)=17
2x-3y=17 मध्ये y साठी -3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x+9=17
-3 ला -3 वेळा गुणाकार करा.
2x=8
समीकरणाच्या दोन्ही बाजूंमधून 9 वजा करा.
x=4
दोन्ही बाजूंना 2 ने विभागा.
x=4,y=-3
सिस्टम आता सोडवली आहे.