मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

4x-y=22,3x+4y=26
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
4x-y=22
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
4x=y+22
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{4}\left(y+22\right)
दोन्ही बाजूंना 4 ने विभागा.
x=\frac{1}{4}y+\frac{11}{2}
y+22 ला \frac{1}{4} वेळा गुणाकार करा.
3\left(\frac{1}{4}y+\frac{11}{2}\right)+4y=26
इतर समीकरणामध्ये x साठी \frac{y}{4}+\frac{11}{2} चा विकल्प वापरा, 3x+4y=26.
\frac{3}{4}y+\frac{33}{2}+4y=26
\frac{y}{4}+\frac{11}{2} ला 3 वेळा गुणाकार करा.
\frac{19}{4}y+\frac{33}{2}=26
\frac{3y}{4} ते 4y जोडा.
\frac{19}{4}y=\frac{19}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{33}{2} वजा करा.
y=2
समीकरणाच्या दोन्ही बाजूंना \frac{19}{4} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{4}\times 2+\frac{11}{2}
x=\frac{1}{4}y+\frac{11}{2} मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{1+11}{2}
2 ला \frac{1}{4} वेळा गुणाकार करा.
x=6
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{11}{2} ते \frac{1}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=6,y=2
सिस्टम आता सोडवली आहे.
4x-y=22,3x+4y=26
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}4&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\26\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}4&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
समीकरणाला \left(\begin{matrix}4&-1\\3&4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-3\right)}&-\frac{-1}{4\times 4-\left(-3\right)}\\-\frac{3}{4\times 4-\left(-3\right)}&\frac{4}{4\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}22\\26\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&\frac{1}{19}\\-\frac{3}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}22\\26\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\times 22+\frac{1}{19}\times 26\\-\frac{3}{19}\times 22+\frac{4}{19}\times 26\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
अंकगणित करा.
x=6,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
4x-y=22,3x+4y=26
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 4x+3\left(-1\right)y=3\times 22,4\times 3x+4\times 4y=4\times 26
4x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने गुणाकार करा.
12x-3y=66,12x+16y=104
सरलीकृत करा.
12x-12x-3y-16y=66-104
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x-3y=66 मधून 12x+16y=104 वजा करा.
-3y-16y=66-104
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-19y=66-104
-3y ते -16y जोडा.
-19y=-38
66 ते -104 जोडा.
y=2
दोन्ही बाजूंना -19 ने विभागा.
3x+4\times 2=26
3x+4y=26 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x+8=26
2 ला 4 वेळा गुणाकार करा.
3x=18
समीकरणाच्या दोन्ही बाजूंमधून 8 वजा करा.
x=6
दोन्ही बाजूंना 3 ने विभागा.
x=6,y=2
सिस्टम आता सोडवली आहे.